• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于公交车轨迹数据的道路GPS环境友好性评估

马连韬, 王亚沙, 彭广举, 赵宇昕, 何远舵, 高敬月

马连韬, 王亚沙, 彭广举, 赵宇昕, 何远舵, 高敬月. 基于公交车轨迹数据的道路GPS环境友好性评估[J]. 计算机研究与发展, 2016, 53(12): 2694-2707. DOI: 10.7544/issn1000-1239.2016.20160626
引用本文: 马连韬, 王亚沙, 彭广举, 赵宇昕, 何远舵, 高敬月. 基于公交车轨迹数据的道路GPS环境友好性评估[J]. 计算机研究与发展, 2016, 53(12): 2694-2707. DOI: 10.7544/issn1000-1239.2016.20160626
Ma Liantao, Wang Yasha, Peng Guangju, Zhao Yuxin, He Yuanduo, Gao Jingyue. Evaluation of GPS-Environment Friendliness of Roads Based on Bus Trajectory Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2694-2707. DOI: 10.7544/issn1000-1239.2016.20160626
Citation: Ma Liantao, Wang Yasha, Peng Guangju, Zhao Yuxin, He Yuanduo, Gao Jingyue. Evaluation of GPS-Environment Friendliness of Roads Based on Bus Trajectory Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2694-2707. DOI: 10.7544/issn1000-1239.2016.20160626
马连韬, 王亚沙, 彭广举, 赵宇昕, 何远舵, 高敬月. 基于公交车轨迹数据的道路GPS环境友好性评估[J]. 计算机研究与发展, 2016, 53(12): 2694-2707. CSTR: 32373.14.issn1000-1239.2016.20160626
引用本文: 马连韬, 王亚沙, 彭广举, 赵宇昕, 何远舵, 高敬月. 基于公交车轨迹数据的道路GPS环境友好性评估[J]. 计算机研究与发展, 2016, 53(12): 2694-2707. CSTR: 32373.14.issn1000-1239.2016.20160626
Ma Liantao, Wang Yasha, Peng Guangju, Zhao Yuxin, He Yuanduo, Gao Jingyue. Evaluation of GPS-Environment Friendliness of Roads Based on Bus Trajectory Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2694-2707. CSTR: 32373.14.issn1000-1239.2016.20160626
Citation: Ma Liantao, Wang Yasha, Peng Guangju, Zhao Yuxin, He Yuanduo, Gao Jingyue. Evaluation of GPS-Environment Friendliness of Roads Based on Bus Trajectory Data[J]. Journal of Computer Research and Development, 2016, 53(12): 2694-2707. CSTR: 32373.14.issn1000-1239.2016.20160626

基于公交车轨迹数据的道路GPS环境友好性评估

基金项目: 国家自然科学基金重点项目(91546203)
详细信息
  • 中图分类号: TP391

Evaluation of GPS-Environment Friendliness of Roads Based on Bus Trajectory Data

  • 摘要: GPS是应用最为广泛的室外定位系统,随着技术的发展精度不断提升.然而城市中,由于GPS卫星信号被建筑遮挡,仍然可能产生较大的多径误差.此类误差已称为城市GPS定位误差的主要成分.评估城市道路中环境对GPS精度的负面影响,即环境的GPS友好度,将有助于对不同地段GPS的误差范围进行预判,从而提升位置服务相关应用的用户体验,并为理解环境特征与多径误差的关系,确定在何处部署辅助定位的设备提供支持.为此,提出了1种通过处理和分析海量公交车GPS轨迹历史数据,从而评估城市主要路段的环境友好性的方法.该方法充分利用公交车运行线路固定的特点,大幅提升数据处理的效率;针对路网数据可能存在的错误,提出了容错性的方案;利用相同车辆及相同路段在GPS误差上存在的内在关联,对缺失数据进行补全;并充分考虑到不同质量GPS端设备对环境友好性评估的影响,确定了基于端设备质量加权的评估计算策略.利用成都市二环内的4869辆公交车1个月的数据,对共计5648个不同路段的环境友好性进行了评估,并通过卫星地图和街景照片,分析验证了方法结果的合理性.
    Abstract: GPS is the most widely-used outdoor positioning system. With the advance of relevant technologies, positioning accuracy of GPS has been increasing continuously. However, as the GPS satellite signal can be blocked by buildings, multi-path error becomes the major cause of positioning error in a city. Evaluating the negative effects of GPS error on urban environments, which is referred as environment friendliness in this paper, will help the prediction of GPS error range in different road segments. Furthermore, it enhances user experiences of location-based services, reveals the relationship between environmental characteristics and multi-path error, and helps to determine where to deploy supplementary positioning devices. In this paper, we have proposed an urban road friendliness evaluation (URFE) approach, based on the processing and analyzing of massive historical bus GPS trajectory data. Specifically, URFE first takes full advantage of the unique features of fixed bus routes to significantly improve the efficiency of data processing. Then, it adopts a fault-tolerant method to deal with the possible errors of street maps; Finally, URFE completes the missing data by utilizing the inherent relationship between GPS errors of the same cars and roads, and utilizes an evaluation strategy by taking the influence of different GPS terminal devices’ qualities into account. Using the bus trajectory data within the second ring road of Chengdu during one month, we evaluate the effectiveness of our approach. Environments friendliness of 5648 different road segments has been evaluated, whose rationality has been verified by checking real satellite maps and street views.
  • 期刊类型引用(9)

    1. 霍纬纲,侯振环. 基于多尺度卷积自注意力的多维时间序列预测. 计算机工程与设计. 2023(04): 1250-1258 . 百度学术
    2. 董红斌,韩爽,付强. 基于AR与DNN联合模型的地理传感器时间序列预测. 计算机科学. 2023(11): 41-48 . 百度学术
    3. 许丹丹,徐洋,张思聪,付子爔. 基于DCNN-GRU模型的XSS攻击检测方法. 计算机应用与软件. 2022(02): 324-329 . 百度学术
    4. 刘琳岚,肖庭忠,舒坚,牛明晓. 基于门控循环单元的链路质量预测. 工程科学与技术. 2022(06): 51-58 . 百度学术
    5. 吴蕾,曾慧平,王海威. 网络非平稳流量多尺度时间序列预测数学建模. 计算机仿真. 2021(08): 356-359+434 . 百度学术
    6. 罗佩,袁景凌,陈旻骋,盛德明. 面向教学资源的均值惩罚随机森林非平稳时序预测方法. 小型微型计算机系统. 2021(10): 2089-2094 . 百度学术
    7. 张冬梅,李金平,李江,余想,宋凯旋. 基于门控权重单元的多变量时间序列预测. 湖南大学学报(自然科学版). 2021(10): 105-112 . 百度学术
    8. 朱海浩,祝永新,汪辉. 基于深度置信网络的多变量时间序列分类方法. 计算机仿真. 2021(12): 262-266 . 百度学术
    9. 杜圣东,李天瑞,杨燕,王浩,谢鹏,洪西进. 一种基于序列到序列时空注意力学习的交通流预测模型. 计算机研究与发展. 2020(08): 1715-1728 . 本站查看

    其他类型引用(24)

计量
  • 文章访问数:  1536
  • HTML全文浏览量:  4
  • PDF下载量:  519
  • 被引次数: 33
出版历程
  • 发布日期:  2016-11-30

目录

    /

    返回文章
    返回