• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

知识嵌入的贝叶斯MA型模糊系统

顾晓清, 王士同

顾晓清, 王士同. 知识嵌入的贝叶斯MA型模糊系统[J]. 计算机研究与发展, 2017, 54(5): 998-1011. DOI: 10.7544/issn1000-1239.2017.20160011
引用本文: 顾晓清, 王士同. 知识嵌入的贝叶斯MA型模糊系统[J]. 计算机研究与发展, 2017, 54(5): 998-1011. DOI: 10.7544/issn1000-1239.2017.20160011
Gu Xiaoqing, Wang Shitong. Knowledge Embedded Bayesian MA Fuzzy System[J]. Journal of Computer Research and Development, 2017, 54(5): 998-1011. DOI: 10.7544/issn1000-1239.2017.20160011
Citation: Gu Xiaoqing, Wang Shitong. Knowledge Embedded Bayesian MA Fuzzy System[J]. Journal of Computer Research and Development, 2017, 54(5): 998-1011. DOI: 10.7544/issn1000-1239.2017.20160011
顾晓清, 王士同. 知识嵌入的贝叶斯MA型模糊系统[J]. 计算机研究与发展, 2017, 54(5): 998-1011. CSTR: 32373.14.issn1000-1239.2017.20160011
引用本文: 顾晓清, 王士同. 知识嵌入的贝叶斯MA型模糊系统[J]. 计算机研究与发展, 2017, 54(5): 998-1011. CSTR: 32373.14.issn1000-1239.2017.20160011
Gu Xiaoqing, Wang Shitong. Knowledge Embedded Bayesian MA Fuzzy System[J]. Journal of Computer Research and Development, 2017, 54(5): 998-1011. CSTR: 32373.14.issn1000-1239.2017.20160011
Citation: Gu Xiaoqing, Wang Shitong. Knowledge Embedded Bayesian MA Fuzzy System[J]. Journal of Computer Research and Development, 2017, 54(5): 998-1011. CSTR: 32373.14.issn1000-1239.2017.20160011

知识嵌入的贝叶斯MA型模糊系统

基金项目: 国家自然科学基金项目(61572236,61502058,61572085);江苏省自然科学基金项目(BK20160187);中央高校基本科研业务费专项资金项目(JUSRP51614A);江苏省高校自然科学基金项目(15KJB520002)
详细信息
  • 中图分类号: TP18; TP391.4

Knowledge Embedded Bayesian MA Fuzzy System

  • 摘要: 模糊系统的独特优势在于其高度的可解释性,然而传统的基于聚类的模糊系统往往需要使用输入空间的全部特征且常出现模糊集交叉的现象,系统的可解释性不高;此外,此类模糊系统对高维数据处理时还会因使用大量的特征而使规则过于复杂.针对此问题,探讨了一种知识嵌入的贝叶斯MA型模糊系统(knowledge embedded Bayesian Mamdan-Assilan type fuzzy system, KE-B-MA).首先,KE-B-MA使用DC(dont care)方法进行知识嵌入的模糊集划分,对模糊隶属度函数中心和输入空间特征的选择进行有效指导,其获得的规则可对应于不同的特征空间.其次,KE-B-MA基于贝叶斯推理使用马尔可夫蒙特卡洛(Markov chain Monte Carlo, MCMC)方法对模糊规则的前后件参数同时学习,所得结果为全局最优解.实验结果表明:与一些经典模糊系统相比,KE-B-MA具有令人满意的分类性能且具有更强的可解释性和清晰性.
    Abstract: The most distinctive characteristic of fuzzy system is its high interpretability. But the fuzzy rules obtained by classical cluster based fuzzy systems commonly need to cover all features of input space and often overlap each other. Specially, when facing the high-dimension problem, the fuzzy rules often become more sophisticated because of too much features involved in antecedent parameters. In order to overcome these shortcomings, based on the Bayesian inference framework, knowledge embedded Bayesian Mamdan-Assilan type fuzzy system (KE-B-MA) is proposed by focusing on the Mamdan-Assilan (MA) type fuzzy system. First, the DC (dont care) approach is incorporated into the selection of fuzzy membership centers and features of input space. Second, in order to enhance the classification performance of obtained fuzzy systems, KE-B-MA learns both antecedent and consequent parameter of fuzzy rules simultaneously by a Markov chain Monte Carlo (MCMC) method, and the obtained parameters can be guaranteed to be global optimal solutions. The experimental results on a synthetic dataset and several UCI machine datasets show that the classification accuracy of KE-B-MA is comparable to several classical fuzzy systems with distinctive ability of providing explicit knowledge in the form of interpretable fuzzy rules. Rather than being rivals, fuzziness in KE-B-MA and probability can be well incorporated.
  • 期刊类型引用(6)

    1. 宋传鸣,王一琦,武惠娟,何熠辉,洪飏,王相海. 深度卷积网络的自然场景文本检测研究综述. 小型微型计算机系统. 2023(09): 1996-2008 . 百度学术
    2. 朱建伟,李朝奎,黄云涛,王佳欣,钟森. 车载遥感高速公路广告影像的文本信息提取研究与应用. 遥感信息. 2022(02): 126-130 . 百度学术
    3. 赵芳,贺怡. 基于人工电场优化的软件定义物联网路由算法. 计算机工程与设计. 2021(10): 2725-2732 . 百度学术
    4. 李凯勇. 大区域图像局部破损点优化提取仿真. 计算机仿真. 2020(05): 439-442+457 . 百度学术
    5. 李朝献. 基于自适应三维立体图像增强优化处理研究. 计算机仿真. 2020(12): 358-361 . 百度学术
    6. 索岩,崔智勇. 场馆监控图像的DCT域视觉显著性检测仿真. 计算机仿真. 2020(12): 421-425 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1069
  • HTML全文浏览量:  2
  • PDF下载量:  724
  • 被引次数: 13
出版历程
  • 发布日期:  2017-04-30

目录

    /

    返回文章
    返回