• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

边缘计算:万物互联时代新型计算模型

施巍松, 孙辉, 曹杰, 张权, 刘伟

施巍松, 孙辉, 曹杰, 张权, 刘伟. 边缘计算:万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. DOI: 10.7544/issn1000-1239.2017.20160941
引用本文: 施巍松, 孙辉, 曹杰, 张权, 刘伟. 边缘计算:万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. DOI: 10.7544/issn1000-1239.2017.20160941
Shi Weisong, Sun Hui, Cao Jie, Zhang Quan, Liu Wei. Edge Computing—An Emerging Computing Model for the Internet of Everything Era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924. DOI: 10.7544/issn1000-1239.2017.20160941
Citation: Shi Weisong, Sun Hui, Cao Jie, Zhang Quan, Liu Wei. Edge Computing—An Emerging Computing Model for the Internet of Everything Era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924. DOI: 10.7544/issn1000-1239.2017.20160941
施巍松, 孙辉, 曹杰, 张权, 刘伟. 边缘计算:万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. CSTR: 32373.14.issn1000-1239.2017.20160941
引用本文: 施巍松, 孙辉, 曹杰, 张权, 刘伟. 边缘计算:万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. CSTR: 32373.14.issn1000-1239.2017.20160941
Shi Weisong, Sun Hui, Cao Jie, Zhang Quan, Liu Wei. Edge Computing—An Emerging Computing Model for the Internet of Everything Era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924. CSTR: 32373.14.issn1000-1239.2017.20160941
Citation: Shi Weisong, Sun Hui, Cao Jie, Zhang Quan, Liu Wei. Edge Computing—An Emerging Computing Model for the Internet of Everything Era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924. CSTR: 32373.14.issn1000-1239.2017.20160941

边缘计算:万物互联时代新型计算模型

基金项目: 国家自然科学基金面上项目(61572001);安徽大学2016年博士科研启动经费项目(J01003214)
详细信息
  • 中图分类号: TP391; TP393

Edge Computing—An Emerging Computing Model for the Internet of Everything Era

  • 摘要: 随着物联网的快速发展和4G/5G无线网络的普及,万物互联的时代已经到来,网络边缘设备数量的迅速增加,使得该类设备所产生的数据已达到泽字节(ZB)级别.以云计算模型为核心的集中式大数据处理时代,其关键技术已经不能高效处理边缘设备所产生的数据,主要表现在:1)线性增长的集中式云计算能力无法匹配爆炸式增长的海量边缘数据;2)从网络边缘设备传输海量数据到云中心致使网络传输带宽的负载量急剧增加,造成较长的网络延迟;3)网络边缘数据涉及个人隐私,使得隐私安全问题变得尤为突出;4)有限电能的网络边缘设备传输数据到云中心消耗较大电能.为此,以边缘计算模型为核心的面向网络边缘设备所产生海量数据计算的边缘式大数据处理应运而生,其与现有以云计算模型为核心的集中式大数据处理相结合,即二者相辅相成,应用于云中心和网络边缘端的大数据处理,较好地解决了万物互联时代大数据处理中所存在的上述问题.边缘计算中的“边缘”是个相对的概念,指从数据源到云计算中心数据路径之间的任意计算资源和网络资源.边缘计算的基本理念是将计算任务在接近数据源的计算资源上运行.首先系统地介绍边缘计算的概念和原理;其次,通过现有研究工作为案例(即云计算任务迁移、视频分析、智能家居、智慧城市、智能交通以及协同边缘),实例化边缘计算的概念;最后,提出边缘计算领域所存在的挑战.该文希望能让学界和产业界了解和关注边缘计算,并能够启发更多的学者开展边缘式大数据处理时代边缘计算模型的研究.
    Abstract: With the proliferation of Internet of things (IoT) and the burgeoning of 4G/5G network, we have seen the dawning of the IoE (Internet of everything) era, where there will be a huge volume of data generated by things that are immersed in our daily life, and hundreds of applications will be deployed at the edge to consume these data. Cloud computing as the de facto centralized big data processing platform is not efficient enough to support these applications emerging in IoE era, i.e., 1) the computing capacity available in the centralized cloud cannot keep up with the explosive growing computational needs of massive data generated at the edge of the network; 2) longer user-perceived latency caused by the data movement between the edge and the cloud;3) privacy and security concerns from data owners in the edge; 4) energy constraints of edge devices. These issues in the centralized big data processing era have pushed the horizon of a new computing paradigm, edge computing, which calls for processing the data at the edge of the network. Leveraging the power of cloud computing, edge computing has the potential to address the limitation of computing capability, the concerns of response time requirement, bandwidth cost saving, data safety and privacy, as well as battery life constraint. “Edge” in edge computing is defined as any computing and network resources along the path between data sources and cloud data centers. In this paper, we introduce the definition of edge computing, followed by several case studies, ranging from cloud offloading to smart home and city, as well as collaborative edge to materialize the concept of edge computing. Finally, we present several challenges and opportunities in the field of edge computing, and hope this paper will gain attention from the community and inspire more research in this direction.
  • 期刊类型引用(10)

    1. 杨秀璋,彭国军,刘思德,田杨,李晨光,傅建明. 面向APT攻击的溯源和推理研究综述. 软件学报. 2025(01): 203-252 . 百度学术
    2. 申国霞,常鑫. 基于可信密码模块的网络信道潜在攻击挖掘. 信息技术. 2023(10): 152-156+162 . 百度学术
    3. 谢峥,路广平,付安民. 一种可扩展的实时多步攻击场景重构方法. 信息安全研究. 2023(12): 1173-1179 . 百度学术
    4. 黄维贵,孙怡峰,欧旺,王玉宾. 基于不确定攻击图的违规外联风险分析. 信息工程大学学报. 2022(05): 570-577 . 百度学术
    5. 王文娟,杜学绘,单棣斌. 基于动态概率攻击图的云环境攻击场景构建方法. 通信学报. 2021(01): 1-17 . 百度学术
    6. 潘亚峰,朱俊虎,周天阳. APT攻击场景重构方法综述. 信息工程大学学报. 2021(01): 55-60+80 . 百度学术
    7. 罗智勇,杨旭,刘嘉辉,许瑞. 基于贝叶斯攻击图的网络入侵意图分析模型. 通信学报. 2020(09): 160-169 . 百度学术
    8. 王硕,王建华,汤光明,裴庆祺,张玉臣,刘小虎. 一种智能高效的最优渗透路径生成方法. 计算机研究与发展. 2019(05): 929-941 . 本站查看
    9. 吴东,郭春,申国伟. 一种基于多因素的告警关联方法. 计算机与现代化. 2019(06): 30-37 . 百度学术
    10. 韩宜轩,秦元庆. 基于因果关联的电力工控系统攻击场景还原. 信息技术. 2019(08): 41-44+48 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  5480
  • HTML全文浏览量:  37
  • PDF下载量:  4280
  • 被引次数: 22
出版历程
  • 发布日期:  2017-04-30

目录

    /

    返回文章
    返回