• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

高通量图像视频计算

唐金辉, 李泽超, 刘少礼, 秦磊

唐金辉, 李泽超, 刘少礼, 秦磊. 高通量图像视频计算[J]. 计算机研究与发展, 2017, 54(6): 1225-1237. DOI: 10.7544/issn1000-1239.2017.20170001
引用本文: 唐金辉, 李泽超, 刘少礼, 秦磊. 高通量图像视频计算[J]. 计算机研究与发展, 2017, 54(6): 1225-1237. DOI: 10.7544/issn1000-1239.2017.20170001
Tang Jinhui, Li Zechao, Liu Shaoli, Qin Lei. High-Throughput Image and Video Computing[J]. Journal of Computer Research and Development, 2017, 54(6): 1225-1237. DOI: 10.7544/issn1000-1239.2017.20170001
Citation: Tang Jinhui, Li Zechao, Liu Shaoli, Qin Lei. High-Throughput Image and Video Computing[J]. Journal of Computer Research and Development, 2017, 54(6): 1225-1237. DOI: 10.7544/issn1000-1239.2017.20170001
唐金辉, 李泽超, 刘少礼, 秦磊. 高通量图像视频计算[J]. 计算机研究与发展, 2017, 54(6): 1225-1237. CSTR: 32373.14.issn1000-1239.2017.20170001
引用本文: 唐金辉, 李泽超, 刘少礼, 秦磊. 高通量图像视频计算[J]. 计算机研究与发展, 2017, 54(6): 1225-1237. CSTR: 32373.14.issn1000-1239.2017.20170001
Tang Jinhui, Li Zechao, Liu Shaoli, Qin Lei. High-Throughput Image and Video Computing[J]. Journal of Computer Research and Development, 2017, 54(6): 1225-1237. CSTR: 32373.14.issn1000-1239.2017.20170001
Citation: Tang Jinhui, Li Zechao, Liu Shaoli, Qin Lei. High-Throughput Image and Video Computing[J]. Journal of Computer Research and Development, 2017, 54(6): 1225-1237. CSTR: 32373.14.issn1000-1239.2017.20170001

高通量图像视频计算

基金项目: 国家“九七三”重点基础研究发展计划基金项目(2014CB347600);国家自然科学基金项目(61402228);国家自然科学基金优秀青年科学基金项目(61522203)
详细信息
  • 中图分类号: TP391

High-Throughput Image and Video Computing

  • 摘要: 互联网上的图像和视频数据正在飞速地产生和传播.这些数据不仅规模庞大,还具有高并发、高维度、大流量的显著特性,导致了目前对它们的实时分析和处理面临着巨大的挑战.这就需要开展高通量图像视频计算方面的研究,需要结合新型硬件结构,利用其体系结构优势,提出一系列实用的高通量图像视频计算理论与方法,提升数据中心的图像视频数据处理效率.为此,在详细地分析了现有的高通量图像视频计算相关方法与技术的基础上,探讨了现有高通量图像视频计算方法研究的不足;进一步地,分析了高通量图像视频计算的3个未来研究方向:高通量图像视频计算理论、高通量图像视频分析方法及高通量视频编码方法.最后,总结了高通量图像视频计算需要解决的3个关键科学问题.这些问题的解决将为互联网图像视频内容监管、大规模视频监控、图像视频搜索等重要应用提供关键技术支持.
    Abstract: In recent years, image and video data grows and spreads rapidly in the Internet. The data not only has huge amount, but also has the characteristics of high concurrency, high dimension and high throughput, which brings huge challenges into the real-time analysis and processing of them. To promote the image and video data processing efficiency of big data platforms, it is necessary and important to study the task of high-throughput image and video computing, and propose a series of high-throughput image and video computing theories and methods by considering the new hardware structures. Towards this end, this work first overviews previous high-throughput image and video computing theories and methods in details, and then discusses the disadvantages of the existing high-throughput image and video computing methods. Furthermore, this work analyzes three research directions of the high-throughput image and video computing task in future: the high-throughput image and video computing theories, the high-throughput image and video analysis methods, and the high-throughput video coding methods. Finally, this work introduces three key scientific problems of high-throughput image and video computing. The solutions of these problems will provide key technical support for the applications of content monitoring of Internet images and videos, the large-scale video surveillance, and the image and video search.
  • 期刊类型引用(3)

    1. 王松,徐雅静,刘新民. 基于Conv-BiLSTM模型的虚拟社区用户生成内容创新价值识别问题研究:交互协同的视角. 数据分析与知识发现. 2023(04): 77-88 . 百度学术
    2. 杨小霞,杨建喜,李韧,罗梦婷,蒋仕新,王桂平,杨一帆. 桥梁检测领域知识图谱构建与知识问答方法. 计算机应用. 2022(S1): 28-36 . 百度学术
    3. 曹惠茹,成海秀,连松耀,王毅. 面向网络论坛的文本数据获取与存储方法研究. 现代信息科技. 2021(01): 7-12 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1660
  • HTML全文浏览量:  1
  • PDF下载量:  856
  • 被引次数: 4
出版历程
  • 发布日期:  2017-05-31

目录

    /

    返回文章
    返回