Power Optimization Based on Dynamic Content Refresh in Mobile Edge Computing
-
摘要: 随着移动互联网的飞速发展与相关技术的不断提升,社交类应用已成为现下主流应用之一.同时,手机应用的功能也越来越丰富,其能耗需求以及信息处理能力也越来越大.针对移动社交平台忽略网络状态、频繁刷新内容(文字、图片、视频等)造成的高能耗以及运算能力问题,提出一种边缘计算模式下基于Markov决策过程(Markov decision process, MDP)的能耗优化模型.该模型考虑不同环境的网络状态,根据手机当前电量以及用户刷新频率,通过本地移动边缘计算层完成数据处理,在Markov决策过程生成的决策表中选择最优策略,动态选择最佳的网络接入以及刷新下载最佳的图片格式.该模型不仅减少刷新时间,而且能够降低移动平台的能耗.实验结果表明:相比于使用单一网络的图片刷新模式,在保证不减少用户刷新次数的前提下,该能耗优化模型降低能耗约12.1%.
-
关键词:
- 社交APP /
- Markov决策过程 /
- 能耗优化 /
- 刷新模式 /
- 边缘计算
Abstract: Nowadays, with the rapid development of mobile Internet and related technologies, social applications have become one of the mainstream applications. At the same time, the functions of mobile applications are also getting richer and richer, and their energy consumption requirements and information processing capabilities are also growing. In view of the problem of high energy consumption and computing power caused by mobile social platforms ignoring network status and frequently refreshing content (words, pictures, videos, etc.), a consumption optimization model based on Markov decision process (MDP) in edge computing is proposed. The model considers the network status in different environments and performs data processing through the local edge computing layer (simulating the local edge computing mode and completing data processing) according to the current power of the mobile phone and the user refresh rate. It selects optimal strategy from the decision tables generated by the Markov decision process, and dynamically selects the best network access and refreshes the best download picture format. The model not only reduces refresh time, but also reduces the power consumption of the mobile platform. The experimental results show that compared with the picture refresh mode using a single network, the energy consumption optimization model proposed in this paper reduces the energy consumption by about 12.1% without reducing the number of user refresh cycles. -
-
期刊类型引用(9)
1. 黄翔东,陈红红,甘霖. 基于频率-时间扩张密集网络的语音增强方法. 计算机研究与发展. 2023(07): 1628-1638 . 本站查看
2. 许春冬,徐琅,周滨. 结合优化U-Net和残差神经网络的单通道语音增强算法. 现代电子技术. 2022(09): 35-40 . 百度学术
3. 葛宛营,张天骐,范聪聪,张天. 噪声情况下采用稀疏非负矩阵分解与深度吸引子网络的人声分离算法. 声学学报. 2021(01): 55-66 . 百度学术
4. GE Wanying,ZHANG Tianqi,FAN Congcong,ZHANG Tian. Monaural noisy speech separation combining sparse non-negative matrix factorization and deep attractor network. Chinese Journal of Acoustics. 2021(02): 266-280 . 必应学术
5. 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法. 山东大学学报(理学版). 2021(09): 1-12+20 . 百度学术
6. 张天骐,柏浩钧,叶绍鹏,刘鉴兴. 基于门控残差卷积编解码网络的单通道语音增强方法. 信号处理. 2021(10): 1986-1995 . 百度学术
7. 曹丽静. 语音增强技术研究综述. 河北省科学院学报. 2020(02): 30-36 . 百度学术
8. 张天骐,张晓艳,周琳,胡延平. 基于稀疏性的相位谱补偿语音增强算法. 信号处理. 2020(11): 1867-1876 . 百度学术
9. 时文华,张雄伟,邹霞,孙蒙. 利用深度全卷积编解码网络的单通道语音增强. 信号处理. 2019(04): 631-640 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 1400
- HTML全文浏览量: 0
- PDF下载量: 807
- 被引次数: 17