Abstract:
With the development of the Internet of things (IoT) technology, a new scenario emerges among various IoT networks in which different IoT networks form a large-scale, heterogeneous and dynamic distributed IoT environment. There is a need for various cooperations among devices and IoT authorities, for which it is necessary to establish a trust mechanism to promote cooperation. However, the existing researches on trust mechanism are mostly separated from the IoT environment, and do not consider the resource limitations of IoT devices as well as great differences among them in computing and storage capabilities, which results in the study of abstract trust mechanisms can not be directly applied to IoT. On the other hand, the existing researches on the issues of IoT trust rely on additional trusted third-party or inter-domain trust assumption, which is hard to be achieved in practice. In order to solve the above problems, we propose a trust management method which is suitable for distributed IoT with the help of blockchain and risk theory. Specifically, we embody the abstract concept of trust as an examination of expected credit and risk, and enable effective sharing of trust data using blockchain. Experimental simulation and analysis show that our method can quantify the trust effectively, protect the data from being tampered and have lower storage cost.