高级检索

    区块链数据分析:现状、趋势与挑战

    Blockchain Data Analysis: A Review of Status, Trends and Challenges

    • 摘要: 区块链是一项具有颠覆许多传统行业的潜力的新兴技术.自以比特币为代表的区块链1.0诞生以来,区块链技术获得了广泛的关注,积累了大量的用户交易数据.而以以太坊为代表的区块链2.0的诞生,更加丰富了区块链的数据类型.区块链技术的火热,催生了大量基于区块链的技术创新的同时也带来许多新的问题,如用户隐私泄露,非法金融活动等.而区块链数据公开的特性,为研究人员通过分析区块链数据了解和解决相关问题提供了前所未有的机会.因此,总结目前区块链数据存在的研究问题、取得的分析成果、可能的研究趋势以及面临的挑战具有重要意义.为此,全面回顾和总结了当前的区块链数据分析的成果,在介绍区块链技术架构和关键技术的基础上,分析了目前区块链系统中主要的数据类型,总结了目前区块链数据的分析方法,并就实体识别、隐私泄露风险分析、网络画像、网络可视化、市场效应分析、交易模式识别、非法行为检测与分析等7个问题总结了当前区块链数据分析的研究进展.最后针对目前区块链数据分析研究中存在的不足分析和展望了未来的研究方向以及面临的挑战.

       

      Abstract: Blockchain technology is a new emerging technology that has the potential to revolutionize many traditional industries. Since the creation of Bitcoin, which represents blockchain 1.0, blockchain technology has been attracting extensive attention and a great amount of user transaction data has been accumulated. Furthermore, the birth of Ethereum, which represents blockchain 2.0, further enriches data type in blockchain. While the popularity of blockchain technology bringing about a lot of technical innovation, it also leads to many new problems, such as user privacy disclosure and illegal financial activities. However, the public accessible of blockchain data provides unprecedented opportunity for researchers to understand and resolve these problems through blockchain data analysis. Thus, it is of great significance to summarize the existing research problems, the results obtained, the possible research trends, and the challenges faced in blockchain data analysis. To this end, a comprehensive review and summary of the progress of blockchain data analysis is presented. The review begins by introducing the architecture and key techniques of blockchain technology and providing the main data types in blockchain with the corresponding analysis methods. Then, the current research progress in blockchain data analysis is summarized in seven research problems, which includes entity recognition, privacy disclosure risk analysis, network portrait, network visualization, market effect analysis, transaction pattern recognition, illegal behavior detection and analysis. Finally, the directions, prospects and challenges for future research are explored based on the shortcomings of current research.

       

    /

    返回文章
    返回