计算机研究与发展 ›› 2018, Vol. 55 ›› Issue (8): 1694-1705.doi: 10.7544/issn1000-1239.2018.20180148
所属专题: 2018数据挖掘前沿进展专题
朱斐1,2,3,吴文1,刘全1,3,伏玉琛1,4
Zhu Fei1,2,3, Wu Wen1, Liu Quan1,3,Fu Yuchen1,4
摘要: 由深度学习(deep learning, DL)和强化学习(reinforcement learning, RL)结合形成的深度强化学习(deep reinforcement learning, DRL)是目前人工智能领域的一个热点.深度强化学习在处理具有高维度输入的最优策略求解任务中取得了很大的突破.为了减少转移状态之间暂时的相关性,传统深度Q网络使用经验回放的采样机制,从缓存记忆中随机采样转移样本.然而,随机采样并不考虑缓存记忆中各个转移样本的优先级,导致网络训练过程中可能会过多地采用信息较低的样本,而忽略一些高信息量的样本,结果不但增加了训练时间,而且训练效果也不理想.针对此问题,在传统深度Q网络中引入优先级概念,提出基于最大置信上界的采样算法,通过奖赏、时间步、采样次数共同决定经验池中样本的优先级,提高未被选择的样本、更有信息价值的样本以及表现优秀的样本的被选概率,保证了所采样本的多样性,使智能体能更有效地选择动作.最后,在Atari 2600的多个游戏环境中进行仿真实验,验证了算法的有效性.
中图分类号: