Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph
-
摘要: 图的分布式表示对于知识图谱的构建与应用任务至关重要.通过对当前流行的图表示学习模型进行比较,分析了现有模型存在的不合理之处,据此提出了一个基于符号语义映射的神经网络模型用于学习图的分布式表示,基本思想是依据知识图谱中已有的实体关系数据,采用循环神经网络对符号组合(实体-关系组合)进行语义编码,并将其映射到目标符号(实体)上.此外,通过为图中的每个关系类型引入一个逆关系镜像,解决了关系的非对称性问题,使模型能够适应多种不同类型的(同构或异构)网络的关系推理任务.该模型适用于大规模知识图谱的表示学习任务.在公开数据集上的实验结果表明,该模型在知识图谱扩容任务和基于图的多标签分类任务上的性能表现优于相关工作.Abstract: Learning graph embedding is a crucial research issue in the field of statistical relational learning and knowledge graph population, and it is important for the construction and application of knowledge graph in recent years. In this paper, we perform a comparative study of the prevalent knowledge representation based reasoning models, with detailed discussion of the general potential problems contained in their basic assumptions. A semantical symbol sensory projection based neural network model is proposed in order to learn graph embedding, whose basic idea is to utilize the recurrent neural network for encoding the compositional representation of symbol strings (composition of entity-relation) onto their target grounded symbol according to the existing relational data in knowledge. In addition, we introduce the inverse image of the relations into the system to deal with the symmetricasymmetric properties of the relations, which makes the proposed model more adaptable to different types of reasoning tasks on a variety of homogeneous and heterogeneous networks than other solutions. The proposed model is suitable for large scale knowledge graph representation learning. Experimental results on benchmark datasets show that the proposed model achieves state-of-the-art performance on both of the knowledge based completion benchmark tests and the graph based multi-label classification tasks.
-
-
期刊类型引用(6)
1. 邬剑升,李玉珩. 基于共同邻居惩罚的复杂网络链路预测方法. 计算机测量与控制. 2023(03): 71-75+139 . 百度学术
2. 王子健,薛家玥,杨鹏飞,李艺茹,相洁. 基于对抗生成网络的时序脑功能网络预测方法. 太原理工大学学报. 2023(05): 830-837 . 百度学术
3. 康驻关,金福生,王国仁. 基于Motif聚集系数与时序划分的高阶链接预测方法. 软件学报. 2021(03): 712-725 . 百度学术
4. 高雅娟,王玉峰. 融合多维特征的ISP网络拓扑匹配优化仿真. 计算机仿真. 2021(02): 278-281+286 . 百度学术
5. 顾秋阳,吴宝,池仁勇. 基于高阶路径相似度的复杂网络链路预测方法. 通信学报. 2021(07): 61-69 . 百度学术
6. 王瑾. 动态有向网络中的时序链路预测问题研究. 粘接. 2021(09): 106-109 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 1945
- HTML全文浏览量: 3
- PDF下载量: 923
- 被引次数: 14