• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种支持大页的层次化DRAMNVM混合内存系统

陈吉, 刘海坤, 王孝远, 张宇, 廖小飞, 金海

陈吉, 刘海坤, 王孝远, 张宇, 廖小飞, 金海. 一种支持大页的层次化DRAMNVM混合内存系统[J]. 计算机研究与发展, 2018, 55(9): 2050-2065. DOI: 10.7544/issn1000-1239.2018.20180269
引用本文: 陈吉, 刘海坤, 王孝远, 张宇, 廖小飞, 金海. 一种支持大页的层次化DRAMNVM混合内存系统[J]. 计算机研究与发展, 2018, 55(9): 2050-2065. DOI: 10.7544/issn1000-1239.2018.20180269
Chen Ji, Liu Haikun, Wang Xiaoyuan, Zhang Yu, Liao Xiaofei, Jin Hai. Largepages Supported Hierarchical DRAMNVM Hybrid Memory Systems[J]. Journal of Computer Research and Development, 2018, 55(9): 2050-2065. DOI: 10.7544/issn1000-1239.2018.20180269
Citation: Chen Ji, Liu Haikun, Wang Xiaoyuan, Zhang Yu, Liao Xiaofei, Jin Hai. Largepages Supported Hierarchical DRAMNVM Hybrid Memory Systems[J]. Journal of Computer Research and Development, 2018, 55(9): 2050-2065. DOI: 10.7544/issn1000-1239.2018.20180269
陈吉, 刘海坤, 王孝远, 张宇, 廖小飞, 金海. 一种支持大页的层次化DRAMNVM混合内存系统[J]. 计算机研究与发展, 2018, 55(9): 2050-2065. CSTR: 32373.14.issn1000-1239.2018.20180269
引用本文: 陈吉, 刘海坤, 王孝远, 张宇, 廖小飞, 金海. 一种支持大页的层次化DRAMNVM混合内存系统[J]. 计算机研究与发展, 2018, 55(9): 2050-2065. CSTR: 32373.14.issn1000-1239.2018.20180269
Chen Ji, Liu Haikun, Wang Xiaoyuan, Zhang Yu, Liao Xiaofei, Jin Hai. Largepages Supported Hierarchical DRAMNVM Hybrid Memory Systems[J]. Journal of Computer Research and Development, 2018, 55(9): 2050-2065. CSTR: 32373.14.issn1000-1239.2018.20180269
Citation: Chen Ji, Liu Haikun, Wang Xiaoyuan, Zhang Yu, Liao Xiaofei, Jin Hai. Largepages Supported Hierarchical DRAMNVM Hybrid Memory Systems[J]. Journal of Computer Research and Development, 2018, 55(9): 2050-2065. CSTR: 32373.14.issn1000-1239.2018.20180269

一种支持大页的层次化DRAMNVM混合内存系统

基金项目: 国家重点研发计划项目(2017YFB1001603);国家自然科学基金项目(61672251,61732010,61628204) This work was supported by the National Key Research and Development Program of China (2017YFB1001603) and the National Natural Science Foundation of China (61672251, 61732010, 61628204).
详细信息
  • 中图分类号: TP303

Largepages Supported Hierarchical DRAMNVM Hybrid Memory Systems

  • 摘要: 随着大数据应用的涌现,计算机系统需要更大容量的内存以满足大数据处理的高时效性需求.新型非易失性存储器(non-volatile memory,NVM)结合传统动态随机存储器(dynamic random access memory, DRAM)组成的混合内存系统具有内存容量大、功耗低的优势,因而得到了广泛关注.大数据应用同时也面临着旁路转换缓冲器(translation lookaside buffer, TLB)缺失率过高的性能瓶颈.大页可以有效降低TLB缺失率,然而,在混合内存中支持大页面临着大页迁移开销过大的问题.因此,设计了一种支持大页和大容量缓存的层次化混合内存系统:DRAM和NVM分别使用4KB和2MB粒度的页面分别进行管理,同时在DRAM和NVM之间实现直接映射.设计了基于访存频率的DRAM缓存数据过滤机制,减轻了带宽压力.提出了基于内存实时信息的动态热度阈值调整策略,灵活适应应用访存特征的变化.实验显示:与使用大页的全NVM内存系统和缓存热页(caching hot page, CHOP)系统相比平均有69.9%和15.2%的性能提升,而与使用大页的全DRAM内存系统相比平均只有8.8%的性能差距.
    Abstract: Hybrid memory systems composed of non-volatile memory (NVM) and DRAM can offer large memory capacity and DRAM-like performance. However, with the increasing memory capacity and application footprints, the address translation overhead becomes another system performance bottleneck due to lower translation lookaside buffer (TLB) converge. Large pages can significantly improve the TLB converge, however, they impede fine-grained page migration in hybrid memory systems. In this paper, we propose a hierarchical hybrid memory system that supports both large pages and fine-grained page caching. We manage NVM and DRAM with large pages and small pages, respectively. The DRAM is used as a cache to NVM by using a direct mapping mechanism. We propose a cache filtering mechanism to only fetch frequently-access (hot) data into the DRAM cache. CPUs can still access the cold data directly in NVM through a DRAM bypassing mechanism. We dynamically adjust the threshold of hot data classification to adapt to the diversifying and dynamic memory access patterns of applications. Experimental results show that our strategy improves the application performance by 69.9% and 15.2% compared with a NVM-only system and the state-of-the-art CHOP scheme, respectively. The performance gap is only 8.8% compared with a DRAM-only memory system with large pages support.
  • 期刊类型引用(9)

    1. 黄翔东,陈红红,甘霖. 基于频率-时间扩张密集网络的语音增强方法. 计算机研究与发展. 2023(07): 1628-1638 . 本站查看
    2. 许春冬,徐琅,周滨. 结合优化U-Net和残差神经网络的单通道语音增强算法. 现代电子技术. 2022(09): 35-40 . 百度学术
    3. 葛宛营,张天骐,范聪聪,张天. 噪声情况下采用稀疏非负矩阵分解与深度吸引子网络的人声分离算法. 声学学报. 2021(01): 55-66 . 百度学术
    4. GE Wanying,ZHANG Tianqi,FAN Congcong,ZHANG Tian. Monaural noisy speech separation combining sparse non-negative matrix factorization and deep attractor network. Chinese Journal of Acoustics. 2021(02): 266-280 . 必应学术
    5. 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法. 山东大学学报(理学版). 2021(09): 1-12+20 . 百度学术
    6. 张天骐,柏浩钧,叶绍鹏,刘鉴兴. 基于门控残差卷积编解码网络的单通道语音增强方法. 信号处理. 2021(10): 1986-1995 . 百度学术
    7. 曹丽静. 语音增强技术研究综述. 河北省科学院学报. 2020(02): 30-36 . 百度学术
    8. 张天骐,张晓艳,周琳,胡延平. 基于稀疏性的相位谱补偿语音增强算法. 信号处理. 2020(11): 1867-1876 . 百度学术
    9. 时文华,张雄伟,邹霞,孙蒙. 利用深度全卷积编解码网络的单通道语音增强. 信号处理. 2019(04): 631-640 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  1494
  • HTML全文浏览量:  7
  • PDF下载量:  582
  • 被引次数: 17
出版历程
  • 发布日期:  2018-08-31

目录

    /

    返回文章
    返回