• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于群体智慧的簇连接聚类集成算法

张恒山, 高宇坤, 陈彦萍, 王忠民

张恒山, 高宇坤, 陈彦萍, 王忠民. 基于群体智慧的簇连接聚类集成算法[J]. 计算机研究与发展, 2018, 55(12): 2611-2619. DOI: 10.7544/issn1000-1239.2018.20180575
引用本文: 张恒山, 高宇坤, 陈彦萍, 王忠民. 基于群体智慧的簇连接聚类集成算法[J]. 计算机研究与发展, 2018, 55(12): 2611-2619. DOI: 10.7544/issn1000-1239.2018.20180575
Zhang Hengshan, Gao Yukun, Chen Yanping, Wang Zhongmin. Clustering Ensemble Algorithm with Cluster Connection Based on Wisdom of Crowds[J]. Journal of Computer Research and Development, 2018, 55(12): 2611-2619. DOI: 10.7544/issn1000-1239.2018.20180575
Citation: Zhang Hengshan, Gao Yukun, Chen Yanping, Wang Zhongmin. Clustering Ensemble Algorithm with Cluster Connection Based on Wisdom of Crowds[J]. Journal of Computer Research and Development, 2018, 55(12): 2611-2619. DOI: 10.7544/issn1000-1239.2018.20180575

基于群体智慧的簇连接聚类集成算法

基金项目: 国家自然科学基金项目(61373116);陕西省科技统筹创新工程基金项目(2016KTZDGY04-01)
详细信息
  • 中图分类号: TP399

Clustering Ensemble Algorithm with Cluster Connection Based on Wisdom of Crowds

  • 摘要: 利用群体智慧原理,将多个相互独立的聚类算法的结果进行聚合,将显著提高聚类结果的准确性.基于群体智慧的簇连接聚类集成算法,首先使用群体智慧理论的独立性、分散性、多样性原则引导个体聚类结果的生成,然后提出基于连接三元组的聚类集成算法对个体聚类结果进行分组聚合,将分组聚合的结果再次进行聚合得到最终的聚类结果.该算法的优点包括:1)通过簇的分组和权重调整,避免了对基聚类生成的簇进行选择,有利于充分利用已生成簇的信息;2)采用连接三元组算法计算数据之间的相似性,可以充分挖掘数据点之间的关系.对不同数据集的实验研究表明:该算法相对传统的集成聚类算法以及群体智慧与机器学习相结合的集成聚类算法,可以进一步提高集成聚类结果的准确性.
    Abstract: The accuracy and stability of clustering will be obviously improved when a lot of independent clustering results for the same data set are aggregated by utilizing the principle of wisdom of crowds. In this paper, clustering ensemble algorithm with cluster connection based on wisdom of crowds (CECWOC) is proposed. Firstly, the independent clustering results are produced by the different clustering algorithms, which is guided by utilizing the independency, decentralization, diversity of wisdom of crowds. Secondly, the clustering ensemble algorithm based on connecting triple is developed to grouping aggregate the produced independent clusters, and the obtained results are aggregated again and the final cluster set is produced. The advantages of proposed algorithm are that: 1)The produced clusters by base clustering is grouping aggregated and weights of clusters are adjusted so that the selection of clusters is avoided, as a result, information on the produced clusters are not ignored; 2)Similarities of data are computed by using connected triple algorithm, the relations of data that their similarities are zero can be used. The experimental results at the different data sets show that the proposed algorithm can obtain the more accurate and stable results than other clustering ensemble algorithms, including the ones based on framework of wisdom of crowds.
  • 期刊类型引用(7)

    1. 杜淑颖,丁世飞,邵长龙. 基于簇间连接的元聚类集成算法. 南京大学学报(自然科学). 2023(06): 961-969 . 百度学术
    2. 吕鸿章,杨易扬,杨戈平,巩志国. k近邻密度支配域代表团密度峰值聚类算法. 计算机工程与应用. 2023(24): 78-87 . 百度学术
    3. 马捷,胡漠,尹舒悦,郝志远. 群体智慧视域下智慧政府信息协同满意度感知范畴研究. 情报科学. 2021(07): 116-123+152 . 百度学术
    4. 李妙娟. 数字化财务系统后台应用数据实时加密方法. 微型电脑应用. 2021(08): 186-189 . 百度学术
    5. 孙毅,毛烨华,李泽坤,张旭东,李飞. 面向电力大数据的用户负荷特性和可调节潜力综合聚类方法. 中国电机工程学报. 2021(18): 6259-6271 . 百度学术
    6. 黄宇翔,黄栋,王昌栋,赖剑煌. 基于集成学习的改进深度嵌入聚类算法. 计算机科学与探索. 2021(10): 1949-1957 . 百度学术
    7. 叶家琪,符强,贺亦甲,叶浩. 基于聚类集成的蚁群算法求解大规模TSP问题. 计算机与现代化. 2020(02): 31-35 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  1343
  • HTML全文浏览量:  0
  • PDF下载量:  447
  • 被引次数: 12
出版历程
  • 发布日期:  2018-11-30

目录

    /

    返回文章
    返回