• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于网络节点聚类的目标IP城市级定位方法

李明月, 罗向阳, 柴理想, 袁福祥, 甘勇

李明月, 罗向阳, 柴理想, 袁福祥, 甘勇. 基于网络节点聚类的目标IP城市级定位方法[J]. 计算机研究与发展, 2019, 56(3): 467-479. DOI: 10.7544/issn1000-1239.2019.20170473
引用本文: 李明月, 罗向阳, 柴理想, 袁福祥, 甘勇. 基于网络节点聚类的目标IP城市级定位方法[J]. 计算机研究与发展, 2019, 56(3): 467-479. DOI: 10.7544/issn1000-1239.2019.20170473
Li Mingyue, Luo Xiangyang, Chai Lixiang, Yuan Fuxiang, GanYong. City-Level IP Geolocation Method Based on Network Node Clustering[J]. Journal of Computer Research and Development, 2019, 56(3): 467-479. DOI: 10.7544/issn1000-1239.2019.20170473
Citation: Li Mingyue, Luo Xiangyang, Chai Lixiang, Yuan Fuxiang, GanYong. City-Level IP Geolocation Method Based on Network Node Clustering[J]. Journal of Computer Research and Development, 2019, 56(3): 467-479. DOI: 10.7544/issn1000-1239.2019.20170473
李明月, 罗向阳, 柴理想, 袁福祥, 甘勇. 基于网络节点聚类的目标IP城市级定位方法[J]. 计算机研究与发展, 2019, 56(3): 467-479. CSTR: 32373.14.issn1000-1239.2019.20170473
引用本文: 李明月, 罗向阳, 柴理想, 袁福祥, 甘勇. 基于网络节点聚类的目标IP城市级定位方法[J]. 计算机研究与发展, 2019, 56(3): 467-479. CSTR: 32373.14.issn1000-1239.2019.20170473
Li Mingyue, Luo Xiangyang, Chai Lixiang, Yuan Fuxiang, GanYong. City-Level IP Geolocation Method Based on Network Node Clustering[J]. Journal of Computer Research and Development, 2019, 56(3): 467-479. CSTR: 32373.14.issn1000-1239.2019.20170473
Citation: Li Mingyue, Luo Xiangyang, Chai Lixiang, Yuan Fuxiang, GanYong. City-Level IP Geolocation Method Based on Network Node Clustering[J]. Journal of Computer Research and Development, 2019, 56(3): 467-479. CSTR: 32373.14.issn1000-1239.2019.20170473

基于网络节点聚类的目标IP城市级定位方法

基金项目: 国家重点研发计划项目(2016YFB0801303,2016QY01W0105);国家自然科学基金项目(U1636219,61572052,61672354,61772549);河南省科技创新人才计划项目(2018JR0018);河南省科技攻关项目(162102210032)
详细信息
  • 中图分类号: TP393

City-Level IP Geolocation Method Based on Network Node Clustering

  • 摘要: 现有经典的基于网络拓扑启发式聚类的目标IP城市级定位方法(HC-Based定位方法)通过网络结构的集群划分对网络IP节点进行聚类,定位结果误差较大,为此提出了一种基于网络节点聚类的IP定位方法(简记为NNC方法).该方法首先利用同一个网络社区往往位于同一个城域网的规律,考虑模块度能够可靠衡量网络社区结构强度的特点,基于模块度最优化进行网络拓扑聚类,得到模块度最高的网络社区划分结果;然后,基于IP地理位置数据库投票规则确定网络社区所处位置;最后,根据目标IP所处的网络社区,确定其所处的城市.基于中国河南、山东、陕西、广东、浙江5个省的15 000个互联网IP节点的实验结果表明:NNC方法与HC-Based定位方法相比,能够明显提升对目标IP的城市级定位的准确率和召回率,并降低地标错误对定位结果的影响.
    Abstract: Existing city-level target IP geolocation method based on network topology heuristic clustering (HC-Based method) clusters IP nodes by simple voting rules, which is liable to cause a lot of errors in geolocation results. This paper presents a city-level IP geolocation method based on network node clustering, referred to as the NNC method. This method firstly uses the principle that the same network community locates in the same metropolitan area network. Considering the characteristics of the module that can accurately measure the strength of the network community structure, the network topology is clustered based on the modular optimization, and the network community with the highest module degree is obtained. Then the IP geography database voting rules is used to determine the location of the network community. Finally, depending on the network community where the target IP is located in, the city where the target IP is located in can be determined. Experimental results of 15 000 Internet IP nodes in five provinces (Henan, Shandong, Shaanxi, Guangdong and Zhejiang) of China show that compared with HC-Based method, the proposed method can significantly improve the accuracy and recall rate of the target IP, and reduce the effect of the inaccurate landmarks on the location results.
  • 期刊类型引用(9)

    1. 霍纬纲,侯振环. 基于多尺度卷积自注意力的多维时间序列预测. 计算机工程与设计. 2023(04): 1250-1258 . 百度学术
    2. 董红斌,韩爽,付强. 基于AR与DNN联合模型的地理传感器时间序列预测. 计算机科学. 2023(11): 41-48 . 百度学术
    3. 许丹丹,徐洋,张思聪,付子爔. 基于DCNN-GRU模型的XSS攻击检测方法. 计算机应用与软件. 2022(02): 324-329 . 百度学术
    4. 刘琳岚,肖庭忠,舒坚,牛明晓. 基于门控循环单元的链路质量预测. 工程科学与技术. 2022(06): 51-58 . 百度学术
    5. 吴蕾,曾慧平,王海威. 网络非平稳流量多尺度时间序列预测数学建模. 计算机仿真. 2021(08): 356-359+434 . 百度学术
    6. 罗佩,袁景凌,陈旻骋,盛德明. 面向教学资源的均值惩罚随机森林非平稳时序预测方法. 小型微型计算机系统. 2021(10): 2089-2094 . 百度学术
    7. 张冬梅,李金平,李江,余想,宋凯旋. 基于门控权重单元的多变量时间序列预测. 湖南大学学报(自然科学版). 2021(10): 105-112 . 百度学术
    8. 朱海浩,祝永新,汪辉. 基于深度置信网络的多变量时间序列分类方法. 计算机仿真. 2021(12): 262-266 . 百度学术
    9. 杜圣东,李天瑞,杨燕,王浩,谢鹏,洪西进. 一种基于序列到序列时空注意力学习的交通流预测模型. 计算机研究与发展. 2020(08): 1715-1728 . 本站查看

    其他类型引用(24)

计量
  • 文章访问数:  1241
  • HTML全文浏览量:  2
  • PDF下载量:  384
  • 被引次数: 33
出版历程
  • 发布日期:  2019-02-28

目录

    /

    返回文章
    返回