计算机研究与发展 ›› 2019, Vol. 56 ›› Issue (3): 594-610.doi: 10.7544/issn1000-1239.2019.20170741
张振国1,2,王超2,温延龙2,袁晓洁3
Zhang Zhenguo1,2, Wang Chao2, Wen Yanlong2, Yuan Xiaojie3
摘要: 在时间序列分类问题中,以Shapelets特征为基础的分类算法具有很高的分类准确率和良好的可解释性,因此,高辨别能力Shapelets的提取已成为时间序列研究领域重要的研究热点之一.对于Shapelets提取的研究已取得了很多优秀的成果,但仍存在一些问题,主要是由于通过遍历所有子序列来获取Shapelets的方式非常耗时.尽管可以采取剪枝策略优化该过程,但往往会损失分类准确率.为此,提出一种基于相似性连接的Shapelets提取方法,该方法舍弃逐一判断子序列分类能力的策略,而是以子序列为单位,通过相似性连接的思想构建时序数据间的相似性向量.对于不同类别的时序数据,计算每一对时序数据间的差异向量,进而得到表示时序数据集中不同类别间差异的候选矩阵,然后根据候选矩阵的数值差异,快速筛选出具有高分类能力的Shapelets集合.在真实数据集上的大量实验表明:相比于现有的Shapelets提取方法,这种相似性连接方法所得到的Shapelets在分类任务中不仅具有很好的时间效率,而且能保证高分类准确率.
中图分类号: