• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于布尔矩阵分解的蛋白质功能预测框架

刘琳, 唐麟, 唐明靖, 周维

刘琳, 唐麟, 唐明靖, 周维. 基于布尔矩阵分解的蛋白质功能预测框架[J]. 计算机研究与发展, 2019, 56(5): 1020-1033. DOI: 10.7544/issn1000-1239.2019.20180274
引用本文: 刘琳, 唐麟, 唐明靖, 周维. 基于布尔矩阵分解的蛋白质功能预测框架[J]. 计算机研究与发展, 2019, 56(5): 1020-1033. DOI: 10.7544/issn1000-1239.2019.20180274
Liu Lin, Tang Lin, Tang Mingjing, Zhou Wei. The Framework of Protein Function Prediction Based on Boolean Matrix Decomposition[J]. Journal of Computer Research and Development, 2019, 56(5): 1020-1033. DOI: 10.7544/issn1000-1239.2019.20180274
Citation: Liu Lin, Tang Lin, Tang Mingjing, Zhou Wei. The Framework of Protein Function Prediction Based on Boolean Matrix Decomposition[J]. Journal of Computer Research and Development, 2019, 56(5): 1020-1033. DOI: 10.7544/issn1000-1239.2019.20180274
刘琳, 唐麟, 唐明靖, 周维. 基于布尔矩阵分解的蛋白质功能预测框架[J]. 计算机研究与发展, 2019, 56(5): 1020-1033. CSTR: 32373.14.issn1000-1239.2019.20180274
引用本文: 刘琳, 唐麟, 唐明靖, 周维. 基于布尔矩阵分解的蛋白质功能预测框架[J]. 计算机研究与发展, 2019, 56(5): 1020-1033. CSTR: 32373.14.issn1000-1239.2019.20180274
Liu Lin, Tang Lin, Tang Mingjing, Zhou Wei. The Framework of Protein Function Prediction Based on Boolean Matrix Decomposition[J]. Journal of Computer Research and Development, 2019, 56(5): 1020-1033. CSTR: 32373.14.issn1000-1239.2019.20180274
Citation: Liu Lin, Tang Lin, Tang Mingjing, Zhou Wei. The Framework of Protein Function Prediction Based on Boolean Matrix Decomposition[J]. Journal of Computer Research and Development, 2019, 56(5): 1020-1033. CSTR: 32373.14.issn1000-1239.2019.20180274

基于布尔矩阵分解的蛋白质功能预测框架

基金项目: 国家自然科学基金项目(61862067,61762089);云南师范大学博士启动项目(2016zb009);云南大学数据驱动的软件工程省科技创新团队项目(2017HC012)
详细信息
  • 中图分类号: TP391

The Framework of Protein Function Prediction Based on Boolean Matrix Decomposition

  • 摘要: 蛋白质是细胞生命活动中最重要和最多样的一种大分子物质.因此,研究蛋白质功能对于破解生命密码具有重要的意义.以往的研究表明蛋白质功能预测问题本质上是一个多标签分类问题,但庞大的功能标签数量使得各种多标签分类器在蛋白质功能预测中的应用面临巨大挑战.针对蛋白质功能标签数量庞大且标签关联性较高的特点,提出了一种基于布尔矩阵分解的蛋白质功能预测框架(protein function prediction based on Boolean matrix decomposition, PFP-BMD).同时,针对目前布尔矩阵分解算法中精确分解和列利用条件难以同时满足的问题,提出一种基于标签簇的精确布尔矩阵分解算法,使其通过标签关联矩阵实现标签的层次扩展聚簇,并通过相关推论证明了该算法可实现最优的精确布尔矩阵分解.实验结果表明:提出的布尔矩阵分解算法在计算复杂度上具有较大优势,且应用了该算法的蛋白质功能预测框架可有效提升蛋白质功能预测的准确率,为各种多标签分类器在蛋白质功能预测中的高效应用奠定了基础.
    Abstract: Protein is the most essential and versatile macromolecule of living cells, and thus the research on protein functions is of great significance in decoding the secret of life. Previous researches have suggested that prediction of protein function is essentially a multi-label classification problem. Nonetheless, the large number of protein functional annotation labels brings the huge challenge to various kinds of multi-label classifiers applied to protein function prediction. To achieve more accuracy prediction of protein function by multi-label classifiers, we consider the characteristics of high correlation between protein functional labels, and propose a framework of protein function prediction based on Boolean matrix decomposition (PFP-BMD). Meanwhile, considering the problem of hardly satisfying exact decomposition and column in condition simultaneously of current Boolean matrix decomposition algorithms, an exact Boolean matrix decomposition algorithm based on label clusters is proposed, which realizes the hierarchical extended clustering of labels by the label-associated matrix. What’s more, we prove its ability of optimal Boolean matrix decomposition based on related deductions. The experimental results show that this exact Boolean matrix decomposition algorithm possesses considerable advantage in reducing the computational complexity in comparison with existing algorithms. In addition, the application of the proposed algorithm in PFP-BMD can effectively improve the accuracy of protein function prediction, and more importantly, reducing and restoring dimensions in the functional label space of proteins using this algorithm lays the foundation of a more efficient classification of various multi-label classifiers.
  • 期刊类型引用(1)

    1. 李鹏,闵慧,罗爱静,瞿昊宇,伊娜,许家祺. 改进的动态PPI网络构建与蛋白质功能预测算法. 计算机工程. 2020(12): 52-59 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  956
  • HTML全文浏览量:  6
  • PDF下载量:  302
  • 被引次数: 4
出版历程
  • 发布日期:  2019-04-30

目录

    /

    返回文章
    返回