• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于邻节点和关系模型优化的网络表示学习

冶忠林, 赵海兴, 张科, 朱宇, 肖玉芝

冶忠林, 赵海兴, 张科, 朱宇, 肖玉芝. 基于邻节点和关系模型优化的网络表示学习[J]. 计算机研究与发展, 2019, 56(12): 2562-2577. DOI: 10.7544/issn1000-1239.2019.20180566
引用本文: 冶忠林, 赵海兴, 张科, 朱宇, 肖玉芝. 基于邻节点和关系模型优化的网络表示学习[J]. 计算机研究与发展, 2019, 56(12): 2562-2577. DOI: 10.7544/issn1000-1239.2019.20180566
Ye Zhonglin, Zhao Haixing, Zhang Ke, Zhu Yu, Xiao Yuzhi. Network Representation Learning Using the Optimizations of Neighboring Vertices and Relation Model[J]. Journal of Computer Research and Development, 2019, 56(12): 2562-2577. DOI: 10.7544/issn1000-1239.2019.20180566
Citation: Ye Zhonglin, Zhao Haixing, Zhang Ke, Zhu Yu, Xiao Yuzhi. Network Representation Learning Using the Optimizations of Neighboring Vertices and Relation Model[J]. Journal of Computer Research and Development, 2019, 56(12): 2562-2577. DOI: 10.7544/issn1000-1239.2019.20180566
冶忠林, 赵海兴, 张科, 朱宇, 肖玉芝. 基于邻节点和关系模型优化的网络表示学习[J]. 计算机研究与发展, 2019, 56(12): 2562-2577. CSTR: 32373.14.issn1000-1239.2019.20180566
引用本文: 冶忠林, 赵海兴, 张科, 朱宇, 肖玉芝. 基于邻节点和关系模型优化的网络表示学习[J]. 计算机研究与发展, 2019, 56(12): 2562-2577. CSTR: 32373.14.issn1000-1239.2019.20180566
Ye Zhonglin, Zhao Haixing, Zhang Ke, Zhu Yu, Xiao Yuzhi. Network Representation Learning Using the Optimizations of Neighboring Vertices and Relation Model[J]. Journal of Computer Research and Development, 2019, 56(12): 2562-2577. CSTR: 32373.14.issn1000-1239.2019.20180566
Citation: Ye Zhonglin, Zhao Haixing, Zhang Ke, Zhu Yu, Xiao Yuzhi. Network Representation Learning Using the Optimizations of Neighboring Vertices and Relation Model[J]. Journal of Computer Research and Development, 2019, 56(12): 2562-2577. CSTR: 32373.14.issn1000-1239.2019.20180566

基于邻节点和关系模型优化的网络表示学习

基金项目: 国家自然科学基金项目(11661069, 61763041,11801296);长江学者和创新研究团队项目(IRT_15R40);青海省自然科学基金项目(2017-ZJ-949Q);中央高校基本科研业务费专项资金项目(2017TS045)
详细信息
  • 中图分类号: TP182

Network Representation Learning Using the Optimizations of Neighboring Vertices and Relation Model

  • 摘要: 网络表示学习旨在于将网络的拓扑结构、节点内容和其他信息嵌入到低维度的向量空间中,从而为网络数据挖掘、链路预测和推荐系统提供一种有效的工具.然而,现有的基于神经网络的表示学习算法即忽略了上下文节点的位置信息,又忽略了节点与文本之间的语义关联.因此,基于以上2点,提出了一种新颖的基于邻节点和关系模型优化的网络表示学习算法(network representation learning algorithm using the optimizations of neighboring vertices and relation model, NRNR).首先,该算法首次采用当前节点的邻居节点优化网络表示学习模型,使得上下文窗口中节点的位置信息被嵌入到网络表示中;其次,该算法首次引入知识表示学习中的关系模型建模节点之间的结构特征,使得节点之间的文本内容以关系约束的形式嵌入到网络表示中;再次,NRNR提出了一种可行且有效的网络表示联合学习框架,将上述2种目标融入到一个统一的优化目标函数中.实验结果表明:NRNR算法在网络节点分类任务中优于各类对比算法,在网络可视化中,NRNR算法学习得到的网络表示展现出了明显的聚类边界.
    Abstract: Network representation learning aims at embedding the network topology structures, vertex contents and other information of networks into the low-dimensional vector space, which thus provides an effective tool for network data mining, link prediction and recommendation system etc. However, the existing learning algorithms based on neural networks neglect the location information of the context vertices. Meanwhile, this kind of algorithms ignore the semantic associations between vertices and texts. Therefore, this paper proposes a novel network representation learning algorithm using the optimizations of neighboring vertices and relation model (NRNR). NRNR first uses the neighboring vertices to optimize the learning procedure, consequently, the location information of the vertices in the context windows is embedded into the network representations. In addition, NRNR first introduces the relational modeling from knowledge representation learning to learn the structure features of the networks, and the text contents between vertices are thus embedded into the network representations with the form of relational constraints. Moreover, NRNR proposes a feasible and effective network representation joint learning framework, which integrates the above two goals into a unified optimization objective function. The experimental results show that the proposed NRNR algorithm is superior to all kinds of baseline algorithms applied to the network node classification tasks in this paper. In network visualization tasks, the network representations obtained by NRNR algorithm show a distinct clustering boundary.
  • 期刊类型引用(6)

    1. 宋传鸣,王一琦,武惠娟,何熠辉,洪飏,王相海. 深度卷积网络的自然场景文本检测研究综述. 小型微型计算机系统. 2023(09): 1996-2008 . 百度学术
    2. 朱建伟,李朝奎,黄云涛,王佳欣,钟森. 车载遥感高速公路广告影像的文本信息提取研究与应用. 遥感信息. 2022(02): 126-130 . 百度学术
    3. 赵芳,贺怡. 基于人工电场优化的软件定义物联网路由算法. 计算机工程与设计. 2021(10): 2725-2732 . 百度学术
    4. 李凯勇. 大区域图像局部破损点优化提取仿真. 计算机仿真. 2020(05): 439-442+457 . 百度学术
    5. 李朝献. 基于自适应三维立体图像增强优化处理研究. 计算机仿真. 2020(12): 358-361 . 百度学术
    6. 索岩,崔智勇. 场馆监控图像的DCT域视觉显著性检测仿真. 计算机仿真. 2020(12): 421-425 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1124
  • HTML全文浏览量:  4
  • PDF下载量:  645
  • 被引次数: 13
出版历程
  • 发布日期:  2019-11-30

目录

    /

    返回文章
    返回