• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

LBSN中基于社区联合聚类的协同推荐方法

龚卫华, 金蓉, 裴小兵, 梅建萍

龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
引用本文: 龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
Citation: Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. DOI: 10.7544/issn1000-1239.2019.20180673
龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673
引用本文: 龚卫华, 金蓉, 裴小兵, 梅建萍. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673
Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673
Citation: Gong Weihua, Jin Rong, Pei Xiaobing, Mei Jianping. Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506-2517. CSTR: 32373.14.issn1000-1239.2019.20180673

LBSN中基于社区联合聚类的协同推荐方法

基金项目: 国家自然科学基金项目(61502420);浙江省自然科学基金项目(LY13F020026,LY16F020032);中国博士后科学基金项目(2015M581957);浙江省教育厅科研项目(Y201840116)
详细信息
  • 中图分类号: TP181

Collaborative Recommendation Method Based on Community Co-Clustering in Location Based Social Networks

  • 摘要: 近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social network, LBSN)作为最近兴起的一种新型异质网络,如何有效发现其含有多维关系的复杂社区结构对现有研究来说是一个挑战性的难题.为此,提出了一种融合用户与位置实体及其多维关系的社区发现方法MRNMF(multi-relational nonnegative matrix factorization),该方法通过建立基于非负矩阵分解的联合聚类目标函数,并考虑融入用户社交关系、用户-位置签到关系以及兴趣点特征等多维度的影响因素,能同时获得紧密关联的用户模糊社区与兴趣点聚簇结构,以有效缓解推荐中的数据稀疏问题.在2种真实LBSN数据集上的实验结果表明,所提出的MRNMF方法同时在兴趣点与朋友这双重推荐上比其他传统方法具有更优越的推荐性能.
    Abstract: In recent years, community discovery in heterogeneous networks has gradually become a research hotspot. However, most of the existing methods for discovering non-overlapping or overlapping communities only take one single type of information network into account, and cannot be applied to heterogeneous networks containing multi-mode entities and their multi-dimensional relationships. Presently as a new emerging heterogeneous network, location based social network (LBSN) is attracting more and more attention from social network field. How to effectively discover the hidden complex community structures with multi-dimensional relationships in LBSN, is a very challenging problem for current researchers. Therefore, a community discovery method called multi-relational nonnegative matrix factorization (MRNMF) is proposed that integrates both user and location entities and fuse their multidimensional relationships in LBSN. This method establishes a joint clustering objective function based on nonnegative matrix factorization (NMF), and considers the effect of multi-dimensional factors such as user social relations, user-location check-ins and features of points of interests (POIs). The merits are that not only obtaining accurate user fuzzy communities, but also getting closely related clusters of POIs, which can effectively alleviate data sparse problem in recommendations. The experimental results on two real LBSN datasets show that the proposed method MRNMF has better recommendation performance than other traditional methods in the dual recommendations for POIs and users.
  • 期刊类型引用(5)

    1. 郑磊,韩鹏军,田晨雨,张琦,钱隆. 基于威胁建模的网络安全日志自动化分析技术. 微型电脑应用. 2023(07): 154-156+180 . 百度学术
    2. 魏丽英,杨立华. 智能化无线通信信道安全容量控制仿真. 计算机仿真. 2022(09): 230-233+238 . 百度学术
    3. 钟煜明,陈长辉. 网络安全分析中的大数据综合研究. 现代信息科技. 2020(08): 142-144 . 百度学术
    4. 刘鸿楠. 网络交易安全与民商法保护的相关性窥探. 法制与社会. 2019(27): 11-12 . 百度学术
    5. 曾峰,崔宁. 无线传感器网络安全技术. 电子技术与软件工程. 2019(19): 195-196 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1325
  • HTML全文浏览量:  4
  • PDF下载量:  436
  • 被引次数: 8
出版历程
  • 发布日期:  2019-10-31

目录

    /

    返回文章
    返回