计算机研究与发展 ›› 2019, Vol. 56 ›› Issue (7): 1432-1440.doi: 10.7544/issn1000-1239.2019.20180714
曹明宇,杨志豪,罗凌,林鸿飞,王健
Cao Mingyu, Yang Zhihao, Luo Ling, Lin Hongfei, Wang Jian
摘要: 药物实体及关系抽取研究对于生物医学研究具有重要的促进作用,也是进一步构建生物医学知识库的基础.现存方法主要采用流水线方式,即先对文本进行实体识别后再对实体对进行关系分类.流水线方法主要存在任务错误传播、未能考虑2个子任务的相互影响和句子中不同关系的相互影响的问题.针对这些问题,提出了一种基于神经网络的药物实体与关系联合抽取方法.使用了一种新标注模式,将药物实体及关系的联合抽取转化为端对端的序列标注任务.使用词向量和字符向量作为词表示输入,使用BiLSTM-CRF模型进行药物实体与关系联合抽取.实验结果表明:在药物-药物交互作用(drug-drug interactions, DDI)2013语料集上,取得了89.9%的实体识别F-score及67.3%的关系抽取F-score,优于使用相同模型的流水线方法.
中图分类号: