• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

微博热门话题关联商品品类挖掘

左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣

左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
引用本文: 左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
Citation: Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. DOI: 10.7544/issn1000-1239.2019.20180723
左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723
引用本文: 左笑晨, 窦志成, 黄真, 卢淑祺, 文继荣. 微博热门话题关联商品品类挖掘[J]. 计算机研究与发展, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723
Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723
Citation: Zuo Xiaochen, Dou Zhicheng, Huang Zhen, Lu Shuqi, Wen Jirong. Product Category Mining Associated with Weibo Hot Topics[J]. Journal of Computer Research and Development, 2019, 56(9): 1927-1938. CSTR: 32373.14.issn1000-1239.2019.20180723

微博热门话题关联商品品类挖掘

基金项目: 国家重点研发计划项目(2018YFC0830703);国家自然科学基金项目(61872370);中央高校基本科研业务费专项资金(2112018391)
详细信息
  • 中图分类号: TP183

Product Category Mining Associated with Weibo Hot Topics

Funds: This work was supported by the National Key Research and Development Plan of China (2018YFC0830703), the National Natural Science Foundation of China (61872370), and the Fundamental Research Funds for the Central Universities (2112018391).
  • 摘要: 微博是目前人们广泛使用的在线分享和交流的社交媒体平台之一.某些被广泛关注的话题因为在微博中被大量网友转发、评论和搜索而形成微博热门话题,而这些热门话题的广泛传播则可能进一步刺激和推动用户的线下行为.作为其中的典型代表,某些微博热门话题可能会刺激电商平台中和该话题相关的商品的热销.提前挖掘出与微博热门话题相关联的商品品类,可帮助电商平台和卖家提前做好商品运维以及库存的调配,提高用户搜索的购物转化率,带来相应商品销量的提升.提出了一种微博热门话题所关联的潜在购物品类的挖掘方法.首先构建商品知识图谱,然后采用多种深度网络模型对商品品类的关联知识图谱信息与微博话题内容进行文本匹配,识别出每个热门话题和商品品类的关联强度.实验表明,该方法能够有效识别出热门话题和购物品类的关联关系,大部分的微博热门话题都可以关联到电商平台中至少一个商品品类.
    Abstract: Weibo is one of the widely used social media platforms for online sharing and communication. Some widely-received topics have been formed into Weibo hot topics by being forwarded, reviewed, and searched by a large number of users in Weibo. And the widespread dissemination of these hot topics may further stimulate and promote users offline behaviors. As a typical representative of it, some hot topics on Weibo may stimulate sales of products related to the topics under the e-commerce platform. Mining out the relevant product categories of Weibos hot topics in advance can help e-commerce platforms and sellers to do a good job of commodity operation and inventory deployment as well as promote the search conversion rate of users and bring about an increase in the sales of corresponding products. This paper proposes a method of mining potential shopping categories associated with hot topics of Weibo. First, the method builds a product knowledge map, and then uses a variety of in-depth network models to perform textual matching between the information of the associated knowledge of product categories and the content of the Weibo topics. The strength of association of each hot topic and product category is identified. Experiments show that the method can effectively identify the relationship between hot topics and shopping categories, and most of the hot topics of Weibo can be associated with at least one product category in the e-commerce platform.
  • 期刊类型引用(3)

    1. 屈晶. 基于深度学习理论的电子商务商品实体智能识别. 自动化技术与应用. 2024(03): 35-38+61 . 百度学术
    2. 熊礼洋,苏诗琳,徐兴隆. 喜获热搜时消费者寻求多样化对企业定价和促销力度的影响. 南华大学学报(社会科学版). 2024(02): 69-78 . 百度学术
    3. 王立平,赵晖. 融合词向量与关键词提取的微博话题发现. 现代计算机. 2020(23): 3-9 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1585
  • HTML全文浏览量:  16
  • PDF下载量:  531
  • 被引次数: 10
出版历程
  • 发布日期:  2019-08-31

目录

    /

    返回文章
    返回