• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型

石文浩, 孟军, 张朋, 刘婵娟

石文浩, 孟军, 张朋, 刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型[J]. 计算机研究与发展, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128
引用本文: 石文浩, 孟军, 张朋, 刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型[J]. 计算机研究与发展, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128
Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128
Citation: Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128
石文浩, 孟军, 张朋, 刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型[J]. 计算机研究与发展, 2019, 56(8): 1652-1660. CSTR: 32373.14.issn1000-1239.2019.20190128
引用本文: 石文浩, 孟军, 张朋, 刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型[J]. 计算机研究与发展, 2019, 56(8): 1652-1660. CSTR: 32373.14.issn1000-1239.2019.20190128
Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. CSTR: 32373.14.issn1000-1239.2019.20190128
Citation: Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. CSTR: 32373.14.issn1000-1239.2019.20190128

融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型

基金项目: 国家自然科学基金项目(61872055,61702075)
详细信息
  • 中图分类号: TP183

Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM

  • 摘要: 非编码RNA(ncRNA)在很多动植物生命活动方面起着重要的调节作用,而微小RNA(miRNA)与长非编码RNA(lncRNA)的相互作用更为重要,其互作关系的研究不仅有助于深入分析基因间生物学功能,也可为疾病的诊治和植物的遗传育种方面提供新思路.目前,miRNA-lncRNA互作关系的预测大多使用生物实验和传统机器学习方法.由于生物鉴定代价高耗时长和机器学习涉及过多人工干预且特征提取过程复杂,在此提出一种融合卷积神经网络(convolutional neural network, CNN)和双向长短期记忆网络(bidirectional long short-term memory network, Bi-LSTM)的深度学习模型,兼备两者优势,既考虑序列间信息相关性和结合上下文信息,又能充分提取序列数据的特征.采用交叉检验评估模型性能,在玉米数据集上与传统机器学习方法和单一模型比对,取得较优的分类效果.另外,采用马铃薯和小麦数据集进行模型测试,准确率分别达到95%和93%以上,验证了模型具有良好的泛化能力.
    Abstract: Non-coding RNA (ncRNA) plays an important regulatory role in many animal and plant life activities, and the interaction of microRNA (miRNA) and long non-coding RNA (lncRNA) is more important. The study of their interaction not only helps to analyze the biological functions of genes, but also provides new ideas for disease diagnosis and treatment and plant genetic breeding. At present, biological experiments and machine learning methods are mostly used to predict miRNA-lncRNA interaction. Due to high cost and time consuming of biological identification and the excessive manual intervention of machine learning and the complex feature extraction process, a deep learning model combining convolutional neural network (CNN) and bidirectional long short-term memory network (Bi-LSTM) is proposed. It combines the advantages of two models, considering the information correlation between sequences and combining context information, and fully extracting features between sequence data. In the experiment, the performance of model is evaluated by cross-validation, compared with the traditional machine learning methods and single model on zea mays dataset, and the superior classification effect is obtained. In addition, the model tests of solanum tuberosum and triticum aestivum species are carried out, and the accuracy rates are up to 95% and 93%, respectively, which verifies good generalization ability of the model.
  • 期刊类型引用(8)

    1. 李欣绪,周忠启,王志奎,张磊,孙丽娜,蔄瑜林. 长链非编码RNA6030408B16RIK结合微小RNA-326-3p参与腹膜透析超滤衰竭发生的机制. 安徽医药. 2023(02): 265-270 . 百度学术
    2. 余琼芳,牛冬阳. 基于LSTM网络的矿山压力时空混合预测. 电子科技. 2023(02): 67-72 . 百度学术
    3. 孙护军. 基于LSTM的单序列矿压智能预测方法研究. 微型电脑应用. 2023(07): 143-145+153 . 百度学术
    4. 孔繁钰,陈纲. 基于改进双向LSTM的评教文本情感分析. 计算机工程与设计. 2022(12): 3580-3587 . 百度学术
    5. 徐雅斌,孙胜杰,武装. 基于深度学习的含能材料生成焓预测方法. 含能材料. 2021(01): 20-28 . 百度学术
    6. 高鑫杰,谷云东,刘浩,马冬芬. Cost231-Hata框架下基于深度学习的无线传播智能预测模型. 数学的实践与认识. 2021(09): 312-320 . 百度学术
    7. 何贤敏,李茂西,何彦青. 基于孪生BERT网络的科技文献类目映射. 计算机研究与发展. 2021(08): 1751-1760 . 本站查看
    8. 李若南,李金宝. 一种无源被动室内区域定位方法的研究. 计算机研究与发展. 2020(07): 1381-1392 . 本站查看

    其他类型引用(21)

计量
  • 文章访问数:  2166
  • HTML全文浏览量:  5
  • PDF下载量:  897
  • 被引次数: 29
出版历程
  • 发布日期:  2019-07-31

目录

    /

    返回文章
    返回