Causal-Pdh: Causal Consistency Model for NoSQL Distributed Data Storage Using HashGraph
-
摘要: 分布式环境中的数据因果一致性指的是对具有因果依赖性的数据进行更新时,须同步更新其他分布式副本中的依赖性元数据,同时满足较高的可用性和性能需求.为解决现有成果中更新可见延迟较高的问题,在数据中心稳定向量的基础上,结合混合逻辑时钟和HashGraph原理,提出了Causal-Pdh模型.使用部分向量和校验值作为消息签名代替了所有向量,并且借鉴HashGraph的原理,改进了各个数据中心同步最新条目的过程,各个父节点随机与其他父节点同步最新状态,从而降低了虚拟投票所使用的时间.最后通过实验验证了Causal-Pdh模型不仅没有影响客户端的吞吐量,而且在时钟偏移较严重时降低了20.85%的用户PUT等待延迟,在系统中存在查询放大的情况时,PUT响应时间降低了23.27%.Abstract: The causal consistency of data in a distributed environment means that when data with causal dependence is updated, the dependency metadata in other distributed copies must be updated simultaneously, while meeting higher availability and performance requirements. To solve the problem of users put latency and updating visible latency in existing results, based on the data center stable vectors, combined with the principle of hybrid logical clocks and the HashGraph, we propose the Causal-Pdh model. To reduce the communication overhead caused by exchanging data between replicates, partial stabel vectors required by synchronizing data and Hash value as the message signatures are used instead of the whole data center stable vectors. The principle of virtual voting in HashGraph is used to improve the process of synchronizing the latest entries in each data center. Just like Gossip about Gossip: each parent node also randomly exchanges the latest status, and updates the clock regularly. This progress reduces the time of virtual voting between the replicates. Finally, it is verified by experiments that the Causal-Pdh model not only doesnt affect the throughput of the client query, but also reduces the wait latency of users put operation by 20.85% when the clock skew is severe. When the query is amplified in the system, the response time of request is reduced by 23.37%.
-
Keywords:
- data consistency /
- causal consistency /
- distributed storage /
- HashGraph /
- hybrid logical clocks
-
-
期刊类型引用(6)
1. 高晶. 基于代价敏感半监督的跨项目软件缺陷数预测模型. 沈阳工程学院学报(自然科学版). 2022(01): 75-80 . 百度学术
2. 马明艳,陈伟,吴礼发. 基于CNN_BiLSTM网络的入侵检测方法. 计算机工程与应用. 2022(10): 116-124 . 百度学术
3. 孙茜,吴鸣. N-Gram模型下网络客户端病毒防御方法仿真. 计算机仿真. 2022(10): 400-404 . 百度学术
4. 李建伟,鲁一萍,郭宏. 基于LSTM的刀具数据异常检测方法的研究. 计算机与数字工程. 2022(12): 2821-2825 . 百度学术
5. 胡文娟. 人工智能的不平衡数据集异常点抽样算法. 计算机仿真. 2020(11): 324-328 . 百度学术
6. 赵浩,李盼盼. 基于邻近梯度的机器学习特征选择优化方法. 计算机仿真. 2020(11): 289-293 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 690
- HTML全文浏览量: 1
- PDF下载量: 272
- 被引次数: 11