• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

几何展开与折叠算法及应用综述

孙晓鹏, 刘诗涵, 王振燕, 李娇娇

孙晓鹏, 刘诗涵, 王振燕, 李娇娇. 几何展开与折叠算法及应用综述[J]. 计算机研究与发展, 2020, 57(11): 2389-2403. DOI: 10.7544/issn1000-1239.2020.20200126
引用本文: 孙晓鹏, 刘诗涵, 王振燕, 李娇娇. 几何展开与折叠算法及应用综述[J]. 计算机研究与发展, 2020, 57(11): 2389-2403. DOI: 10.7544/issn1000-1239.2020.20200126
Sun Xiaopeng, Liu Shihan, Wang Zhenyan, Li Jiaojiao. Survey on Geometric Unfolding, Folding Algorithms and Applications[J]. Journal of Computer Research and Development, 2020, 57(11): 2389-2403. DOI: 10.7544/issn1000-1239.2020.20200126
Citation: Sun Xiaopeng, Liu Shihan, Wang Zhenyan, Li Jiaojiao. Survey on Geometric Unfolding, Folding Algorithms and Applications[J]. Journal of Computer Research and Development, 2020, 57(11): 2389-2403. DOI: 10.7544/issn1000-1239.2020.20200126

几何展开与折叠算法及应用综述

基金项目: 国家自然科学基金项目(61472170);北京邮电大学智能通信软件与多媒体北京市重点实验室开放课题(ITSM201301)
详细信息
  • 中图分类号: TP391.4

Survey on Geometric Unfolding, Folding Algorithms and Applications

Funds: This work was supported by the National Natural Science Foundation of China (61472170) and the Open Project of Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications) (ITSM201301).
  • 摘要: 展开与折叠是计算机图形学中的重要研究问题,已经广泛应用于工业制造、建筑设计、医学治疗和航空航天等方面.通过回顾近年来图形学中展开与折叠方面的主要研究问题,总结整理它们的典型算法.首先介绍展开与折叠的基本概念,并从机器人设计、计算机动画、深度学习和其他4个领域介绍它们的应用情况.之后,按照展开程度分类,从完全展开和近似展开2方面总结展开问题的研究进展和典型算法思想;按照折叠形式不同,将折叠问题分为Origami折叠和Kirigami折叠2类,分别论述其研究进展并总结算法思路.之后,整理展开与折叠的评价指标,总结各类展开与折叠算法的特点,并分析比较它们的优势与不足.最后,总结并提出展开与折叠的4个发展趋势.
    Abstract: Unfolding and folding problem is a popular research topic in computer graphics, and has a wide range of applications, such as industrial manufacturing, architectural design, medical treatment, and aviation technology. In this survey, we review the basic concepts of unfolding and folding problem, introduce the research and application in four fields: robot design, computer animation, deep learning and others. We discuss the research work of unfolding and folding problem in detail. First, according to the different degrees of unfolding, we summarize research progress and typical algorithm ideas from two aspects: full unfolding and approximate unfolding. Full unfolding is to unfold 3D objects into 2D space without overlapping and deformation. However, most objects cannot be directly unfolded, and only an approximately unfolded structure can be solved. Approximate unfolding is a non-overlapping and deformed process, which is unfolded into the plane domain by mapping. How to find the smallest deformation is the key to approximate unfolding. Second, according to the different folding forms, the folding problem is divided into two types: Origami and Kirigami. We divide Origami into rigid folding and curved folding according to the different forms of crease, such as straight crease and curved crease. Kirigami is a special folding method that combines cutting and folding technology, which drives folding by the elastic force or other external forces generated by cutting. Here, we mainly consider the technology or algorithm of using Kirigami technology to construct auxetic structures. In addition, in order to compare the advantages and disadvantages of the algorithm, we summarize the commonly used algorithm indicators of unfolding and folding algorithm. Then, we evaluate the typical algorithm in recent years, and analyze advantages and disadvantages. Finally, we summarize and propose the development trend of unfolding and folding, including algorithm accuracy and robustness, fold volumetric objects, self-driven process and intelligent application of Kirigami technology.
  • 期刊类型引用(19)

    1. 胡翰林,刘革平. 走向多模态:虚拟现实学习活动的价值路向. 基础教育. 2024(01): 96-105 . 百度学术
    2. 刘小静,杨佳馨. 智慧教育环境下的儿童认知数据挖掘及应用策略. 新课程导学. 2024(22): 83-86 . 百度学术
    3. 冯艳丽,周宇,黄福兴,万俊岭,袁培森. 基于SF-Transformer的智能教育平台短期电力负荷预测研究. 华东师范大学学报(自然科学版). 2024(05): 173-182 . 百度学术
    4. 李慧. 融合情感特征的在线学习成绩预测研究. 小型微型计算机系统. 2023(07): 1360-1366 . 百度学术
    5. 郑浩东,马华,谢颖超,唐文胜. 融合遗忘因素与记忆门的图神经网络知识追踪模型. 计算机应用. 2023(09): 2747-2752 . 百度学术
    6. 朱彩霞,徐洁. 智能技术赋能小学语文个性化作业设计的内在逻辑与实践路径. 中小学电教. 2023(10): 23-26 . 百度学术
    7. 罗江华,冯瑞. 智能导学系统(ITS)演化逻辑及进化趋势探析. 未来教育研究. 2023(01): 141-155 . 百度学术
    8. 刘铁园,陈威,常亮,古天龙. 基于深度学习的知识追踪研究进展. 计算机研究与发展. 2022(01): 81-104 . 本站查看
    9. 许嘉,韦婷婷,于戈,黄欣悦,吕品. 题目难度评估方法研究综述. 计算机科学与探索. 2022(04): 734-759 . 百度学术
    10. 过珺. 基于翻转课堂的认知诊断在教学中的实践研究. 常州信息职业技术学院学报. 2022(02): 53-57+65 . 百度学术
    11. 严志. 基于密度聚类算法的学情数据可视化分析研究. 现代计算机. 2022(06): 43-47 . 百度学术
    12. 张倍思,陈烨,齐艺,董庆兴. 多源过程性数据驱动的学习者综合评价模型研究. 情报科学. 2022(05): 104-110 . 百度学术
    13. 夏智伦,应若平,甘文波,胡超. 湖南推进教育数字化转型的创新实践. 中国教育信息化. 2022(06): 8-12 . 百度学术
    14. 曾凡智,许露倩,周燕,周月霞,廖俊玮. 面向智慧教育的知识追踪模型研究综述. 计算机科学与探索. 2022(08): 1742-1763 . 百度学术
    15. 王丹萍,王忠,梁宏涛. 基于深度学习的知识追踪研究综述. 计算机测量与控制. 2022(12): 1-10 . 百度学术
    16. 宋清林,谢飞. 基于认知诊断的教学资源个性化推荐. 合肥师范学院学报. 2021(03): 14-16+70 . 百度学术
    17. 梁琨,任依梦,尚余虎,张翼英,王聪. 深度学习驱动的知识追踪研究进展综述. 计算机工程与应用. 2021(21): 41-58 . 百度学术
    18. 孙建文,周建鹏,刘三女牙,何绯娟,唐云. 基于多层注意力网络的可解释认知追踪方法. 计算机研究与发展. 2021(12): 2630-2644 . 本站查看
    19. 彭霁一. 教育大数据的应用模式与政策建议. 科教导刊(中旬刊). 2020(12): 9-10 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  1054
  • HTML全文浏览量:  4
  • PDF下载量:  514
  • 被引次数: 40
出版历程
  • 发布日期:  2020-10-31

目录

    /

    返回文章
    返回