计算机研究与发展 ›› 2020, Vol. 57 ›› Issue (8): 1617-1626.doi: 10.7544/issn1000-1239.2020.20200496
所属专题: 2020数据挖掘与知识发现专题
孟银凤1,梁吉业2
Meng Yinfeng1, Liang Jiye2
摘要: 函数型数据的模式识别问题广泛存在于医学、经济、金融、生物、气象等各个领域,探索更具泛化性能的分类器对准确挖掘函数型数据当中隐藏的知识至关重要.针对经典函数Logistic模型的泛化性能不高的问题,提出了线性正则化函数Logistic模型,该模型的生成通过求解一个优化问题实现.在该优化问题当中,前项是基于函数样例的似然函数构造的,用于控制函数样例的分类性能;后项是正则化项,用于控制模型的复杂性.同时,这2项进行了线性加权组合,这样,限制了正则化子的取值范围,方便给出一个经验最优参数,然后可在这一经验最优参数的指导下选出一个适当的函数主成分基个数下的Logistic模型用于函数型数据的分类.实验结果表明:选出的线性正则化函数Logistic模型的泛化性能优于经典的函数Logistic模型.
中图分类号: