• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

连续学习研究进展

韩亚楠, 刘建伟, 罗雄麟

韩亚楠, 刘建伟, 罗雄麟. 连续学习研究进展[J]. 计算机研究与发展, 2022, 59(6): 1213-1239. DOI: 10.7544/issn1000-1239.20201058
引用本文: 韩亚楠, 刘建伟, 罗雄麟. 连续学习研究进展[J]. 计算机研究与发展, 2022, 59(6): 1213-1239. DOI: 10.7544/issn1000-1239.20201058
Han Yanan, Liu Jianwei, Luo Xionglin. Research Progress of Continual Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1213-1239. DOI: 10.7544/issn1000-1239.20201058
Citation: Han Yanan, Liu Jianwei, Luo Xionglin. Research Progress of Continual Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1213-1239. DOI: 10.7544/issn1000-1239.20201058
韩亚楠, 刘建伟, 罗雄麟. 连续学习研究进展[J]. 计算机研究与发展, 2022, 59(6): 1213-1239. CSTR: 32373.14.issn1000-1239.20201058
引用本文: 韩亚楠, 刘建伟, 罗雄麟. 连续学习研究进展[J]. 计算机研究与发展, 2022, 59(6): 1213-1239. CSTR: 32373.14.issn1000-1239.20201058
Han Yanan, Liu Jianwei, Luo Xionglin. Research Progress of Continual Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1213-1239. CSTR: 32373.14.issn1000-1239.20201058
Citation: Han Yanan, Liu Jianwei, Luo Xionglin. Research Progress of Continual Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1213-1239. CSTR: 32373.14.issn1000-1239.20201058

连续学习研究进展

基金项目: 中国石油大学(北京)科研基金项目(2462020YXZZ023)
详细信息
  • 中图分类号: TP391

Research Progress of Continual Learning

Funds: This work was supported by the Research Fund of China University of Petroleum(Beijing) (2462020YXZZ023).
  • 摘要: 近年来,随着信息技术的不断发展,各种数据呈现爆炸式的增长,传统的机器学习算法只有当测试数据与训练数据分布类似时,学习算法才能取得较好的性能,换句话说,它们不能在动态环境中连续自适应地学习,然而,这种自适应学习的能力却是任何智能系统都具备的特性.深度神经网络在许多应用中显示出最好的学习能力,然而,使用该方法对数据进行增量更新学习时,会面临灾难性的干扰或遗忘问题,导致模型在学习新任务之后忘记如何解决旧任务.连续学习(continual learning, CL)的研究使这一问题得到缓解.连续学习是模拟大脑学习的过程,按照一定的顺序对连续非独立同分布的(independently and identically distributed, IID)流数据进行学习,进而根据任务的执行结果对模型进行增量式更新.连续学习的意义在于高效地转化和利用已经学过的知识来完成新任务的学习,并且能够极大程度地降低遗忘带来的问题.连续学习研究对智能计算系统自适应地适应环境改变具有重要的意义.基于此,系统综述了连续学习的研究进展,首先概述了连续学习的定义,介绍了无遗忘学习、弹性权重整合和梯度情景记忆3种典型的连续学习模型,并对连续学习存在的关键问题及解决方法进行了介绍,之后又对基于正则化、动态结构和记忆回放互补学习系统的3类连续学习模型进行了分类和阐述,并在最后指明了连续学习进一步研究中需要解决的问题以及未来可能的发展方向.
    Abstract: In recent years, with the continuous development of information technology, all kinds of data have shown explosive growth. Traditional machine learning algorithms can only achieve better performance when the distribution of testing data and training data is similar. In other words, it is impossible to continuously and adaptively learn in dynamic environment. However, this ability that can learn adaptively in dynamic environment is very important for any intelligent systems. Deep neural networks have shown the best learning ability in many applications. However, when we apply these methods to incrementally update the model parameters, the model would face catastrophic interference or forgetting problems, which can cause the model to forget the old knowledge after learning a new task. The research of continual learning alleviates this problem. Continual learning is a process of simulating brain learning. It learns continual non-independent and identically distributed data streams in a certain order, and incrementally updates the model according to the results of task. The significance of continual learning is to efficiently transform and use the knowledge that has been learned to complete the learning of new tasks, and to greatly reduce the problems caused by forgetting. The study of continuous learning is of great significance for intelligent computing systems to adaptively learn changes in the environment. In view of the application value, theoretical significance and future development potential of continual learning, the article systematically reviews the research progress of continual learning. Firstly, this paper outlines the definition of continual learning. Three typical continual learning models are introduced, namely learning without forgetting, elastic weight consolidation and gradient episodic memory. Then, the key problems and solutions of continual learning are also introduced. After that, the three types of methods based on regularization, dynamic framework, memory replay and complementary learning systems have been introduced. At last, this paper points out potential challenges and future directions in the field of continual learning.
  • 期刊类型引用(13)

    1. 孙文举,李清勇,张靖,王丹羽,王雯,耿阳李敖. 基于深度神经网络的增量学习研究综述. 数据分析与知识发现. 2025(01): 1-30 . 百度学术
    2. 谢家晨,刘波,林伟伟,郑剑文. 联邦增量学习研究综述. 计算机科学. 2025(03): 377-384 . 百度学术
    3. 徐岸,吴永明,郑洋. 自适应特征整合与参数优化的类增量学习方法. 计算机工程与应用. 2024(03): 220-227 . 百度学术
    4. 马旭淼,徐德. 机器人增量学习研究综述. 控制与决策. 2024(05): 1409-1423 . 百度学术
    5. 姚红革,邬子逸,马姣姣,石俊,程嗣怡,陈游,喻钧,姜虹. 避免近期偏好的自学习掩码分区增量学习. 软件学报. 2024(07): 3428-3453 . 百度学术
    6. 徐岸,吴永明,郑洋. 基于自监督与蒸馏约束的正则化类增量学习方法. 计算机辅助设计与图形学学报. 2024(05): 775-785 . 百度学术
    7. 朱觐镳,吴一帆,王东署. 智能体记忆引导的学习与决策:海马体记忆回放的视角. 控制理论与应用. 2024(10): 1753-1764 . 百度学术
    8. 王伟,张志莹,郭杰龙,兰海,俞辉,魏宪. 基于脑启发的类增量学习. 计算机应用研究. 2023(03): 671-675+688 . 百度学术
    9. 朱飞,张煦尧,刘成林. 类别增量学习研究进展和性能评价. 自动化学报. 2023(03): 635-660 . 百度学术
    10. 吴楚,王士同. 任务相似度引导的渐进深度神经网络及其学习. 计算机科学与探索. 2023(05): 1126-1138 . 百度学术
    11. 孙家辉,马骊溟. 持续学习算法在车辆目标识别上的应用. 汽车实用技术. 2023(15): 73-81 . 百度学术
    12. 孙泽群,崔员宁,胡伟. 基于链接实体回放的多源知识图谱终身表示学习. 软件学报. 2023(10): 4501-4517 . 百度学术
    13. 郭广慧,钟世华,李三忠,丰成友,戴黎明,索艳慧,刘嘉情,牛警徽,黄宇,薛梓萌. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解:以东昆仑祁漫塔格为例. 西北地质. 2023(06): 57-70 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  1909
  • HTML全文浏览量:  38
  • PDF下载量:  1152
  • 被引次数: 29
出版历程
  • 发布日期:  2022-05-31

目录

    /

    返回文章
    返回