计算机研究与发展 ›› 2021, Vol. 58 ›› Issue (2): 427-435.doi: 10.7544/issn1000-1239.2021.20200021
谭建豪,张思远
Tan Jianhao, Zhang Siyuan
摘要: 为解决相关滤波类视觉跟踪算法中的边界效应问题,提出一种基于自适应空间正则化的视觉跟踪算法.在经典滤波模型中引入自适应空间正则化项,通过建立正则权重在相邻帧之间的关联,自适应调整当前帧的模型正则化权重,减小边界效应的影响.采用自适应宽高比的尺度估计策略,以及基于颜色直方图相似度的模型更新策略,抑制模型漂移,提高跟踪准确性.实验显示,该算法在UAV123,OTB2013,OTB2015这3个数据集上的跟踪成功率和精确度均高于所有对比的算法,且即使在复杂场景中也能保持良好的跟踪效果.特别是在出现运动模糊和目标在平面内旋转2种情况时,该算法的跟踪成功率较排名第2的算法分别提升了9.72个百分点和9.03个百分点,说明所提出的算法具有较好的适应性.
中图分类号: