• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于自适应空间正则化的视觉目标跟踪算法

谭建豪, 张思远

谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435. DOI: 10.7544/issn1000-1239.2021.20200021
引用本文: 谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435. DOI: 10.7544/issn1000-1239.2021.20200021
Tan Jianhao, Zhang Siyuan. Visual Tracking Algorithm Based on Adaptive Spatial Regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. DOI: 10.7544/issn1000-1239.2021.20200021
Citation: Tan Jianhao, Zhang Siyuan. Visual Tracking Algorithm Based on Adaptive Spatial Regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. DOI: 10.7544/issn1000-1239.2021.20200021
谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435. CSTR: 32373.14.issn1000-1239.2021.20200021
引用本文: 谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435. CSTR: 32373.14.issn1000-1239.2021.20200021
Tan Jianhao, Zhang Siyuan. Visual Tracking Algorithm Based on Adaptive Spatial Regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. CSTR: 32373.14.issn1000-1239.2021.20200021
Citation: Tan Jianhao, Zhang Siyuan. Visual Tracking Algorithm Based on Adaptive Spatial Regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435. CSTR: 32373.14.issn1000-1239.2021.20200021

基于自适应空间正则化的视觉目标跟踪算法

基金项目: 国家自然科学基金项目(61433016);湖南省科技创新计划项目(2017XK2102)
详细信息
  • 中图分类号: TP391.41

Visual Tracking Algorithm Based on Adaptive Spatial Regularization

Funds: This work was supported by the National Natural Science Foundation of China (61433016) and the Science and Technology Innovation Program of Hunan Province (2017XK2102).
  • 摘要: 为解决相关滤波类视觉跟踪算法中的边界效应问题,提出一种基于自适应空间正则化的视觉跟踪算法.在经典滤波模型中引入自适应空间正则化项,通过建立正则权重在相邻帧之间的关联,自适应调整当前帧的模型正则化权重,减小边界效应的影响.采用自适应宽高比的尺度估计策略,以及基于颜色直方图相似度的模型更新策略,抑制模型漂移,提高跟踪准确性.实验显示,该算法在UAV123,OTB2013,OTB2015这3个数据集上的跟踪成功率和精确度均高于所有对比的算法,且即使在复杂场景中也能保持良好的跟踪效果.特别是在出现运动模糊和目标在平面内旋转2种情况时,该算法的跟踪成功率较排名第2的算法分别提升了9.72个百分点和9.03个百分点,说明所提出的算法具有较好的适应性.
    Abstract: In the visual tracking algorithm based on correlation filters, the method of generating sample sets by cyclic shift greatly reduces the amount of calculation. However, it will also bring about boundary effects, and the resulting error samples will weaken the discriminative ability of the classifier. In order to solve the above problem, a visual tracking algorithm based on adaptive spatial regularization is proposed. An adaptive spatial regularization term is introduced into the classic filtering model. By establishing the correlation of regularization weights between adjacent frames, the regularization weights of the model can be adaptively adjusted. In this way, the risk of overfitting when processing unreal samples can be reduced, thereby mitigating the boundary effect. We adopt a scale estimation strategy with adaptive aspect ratio, which can accurately track the scale change of the target. In addition, the update strategy based on the similarity of color histograms is used to avoid the model update when the tracking is inaccurate, thereby suppressing model drift and improving tracking accuracy and speed. Experiments show that the success rate and accuracy of our algorithm on UAV123, OTB2013, OTB2015 are higher than all the compared algorithms. And even in various complex scenes, our algorithm can still maintain a high tracking success rate. Especially in the presence of motion blur and in-plane rotation, the success rate scores are 9.72% and 9.03% higher than the second best algorithm, respectively, which shows that the algorithm has good adaptability.
  • 期刊类型引用(5)

    1. 王明,张倩. 我国基于深度学习的图像识别技术在农作物病虫害识别中的研究进展. 中国蔬菜. 2023(03): 22-28 . 百度学术
    2. 覃伟荣,劳燕玲. 基于3D关联规则深度学习的异构遥感数据检测. 计算机仿真. 2023(09): 482-486 . 百度学术
    3. 吕晓洁. 基于深度学习的分布式光伏发电系统电压稳定性评估. 电子设计工程. 2022(17): 114-118 . 百度学术
    4. 宋美佳,贾鹤鸣,林志兴,卢仁盛,刘庆鑫. 自适应学习率梯度下降的优化算法. 三明学院学报. 2021(06): 36-44 . 百度学术
    5. 郑俊浩. 基于深度学习的乳腺癌MRI影像预处理. 智能计算机与应用. 2020(01): 231-232+236 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  759
  • HTML全文浏览量:  4
  • PDF下载量:  313
  • 被引次数: 11
出版历程
  • 发布日期:  2021-01-31

目录

    /

    返回文章
    返回