Rethinking Index Design Based on Persistent Memory Device
-
摘要: 非易失性内存(non-volatile memory, NVM)是近几年来出现的一种新型存储介质.一方面,同传统的易失性内存一样,它有着低访问延迟、可字节寻址的特性;另一方面,与易失性内存不同的是,掉电后它存储的数据不会丢失,此外它还有着更高的密度以及更低的能耗开销.这些特性使得非易失性内存有望被大规模应用在未来的计算机系统中.非易失性内存的出现为构建高效的持久化索引提供了新的思路.由于非易失性硬件还处于研究阶段,因此大多数面向非易失性内存的索引研究工作基于模拟环境开展.在2019年4月英特尔发布了基于3D-XPoint技术的非易失性内存硬件apache pass (AEP),这使得研究人员可以基于真实的硬件环境去进行相关研究工作.首先评测了真实的非易失性内存器件,结果显示AEP的写延迟接近DRAM,而读延迟是DRAM的3~4倍.基于对硬件的实际评测结果,研究发现过去很多工作对非易失性内存的性能假设存在偏差,这使得过去的一些工作大多只针对写性能进行优化,并没有针对读性能进行优化.因此,重新审视了之前研究工作,针对过去的混合索引工作进行了读优化.此外,还提出了一种基于混合内存的异步缓存方法.实验结果表明,经过异步缓存方法优化后的混合索引读性能是优化前的1.8倍,此外,经过异步缓存优化后的持久化索引最多可以降低50%的读延迟.Abstract: NVM (non-volatile memory) is a new type of storage medium that has emerged in recent years. On the one hand, similar to DRAM (Dynamic RAM), NVM has low access latency and byte-addressable characteristics; on the other hand, it does not lose data after a power failure. Moreover, it has higher density and lower power consumption. The emergence of NVM provides new opportunities for improving indexing efficiency, and thus many works focus on building NVM-based indexing. However, these works are conducted based on simulated NVM devices. In April 2019, Intel released real NVM hardware AEP (apache pass) based on 3D-XPoint technology. The actual AEP devices are evaluated, and the results show that the write latency of AEP is close to that of DRAM, while the read latency is 3~4 times that of DRAM. Based on actual NVM hardware performance, we find that many past works have biased performance assumptions about NVM, which leaves some past works open to optimizing space. We then revisit previous persistent indexing works. We propose a read-optimized hybrid index (HybridIndex\++) and a hybrid-memory-based asynchronous caching approach for persistent index. Experimental results show that the read performance of HybridIndex\++ is 1.8 times that of existing hybrid index. The asynchronous cache-optimized indexes can reduce latency by up to 50%.
-
Keywords:
- non-volatile memory /
- persistent memory /
- index /
- storage systems /
- key-value store
-
-
期刊类型引用(12)
1. 杨兴耀,肖瑞,卢进堂. 新疆维吾尔语口音普通话短文的语音识别研究. 东北师大学报(自然科学版). 2024(04): 72-80 . 百度学术
2. 闫凯,宋烨,刘瑜,杨莉,张浩源. 老龄化背景下居家养老系统方言识别算法应用研究——以粤语为例. 信息与电脑(理论版). 2023(02): 120-122 . 百度学术
3. 蒋若怡,韦永壮,王慧娇. 基于深度学习的差分神经区分器求解方法. 计算机工程与设计. 2023(06): 1629-1634 . 百度学术
4. 赵建川,杨浩铨,徐勇,吴恋,崔忠伟. 基于对比预测编码模型的多任务学习语种识别方法. 数据采集与处理. 2022(02): 288-297 . 百度学术
5. 万苗,任杰,马苗,曹瑞. 多任务学习在中国方言分类中的应用研究. 计算机技术与发展. 2022(04): 109-115 . 百度学术
6. 郝焕香. 基于深度学习的方言语音识别模型构建. 自动化与仪器仪表. 2022(04): 48-51 . 百度学术
7. 王瑶,龙华,邵玉斌,杜庆治. 可变时长的短时广播语音多语种识别. 云南大学学报(自然科学版). 2022(03): 490-496 . 百度学术
8. 付英,刘增力,汤辉. 基于CNN-BiGRU的方言语种识别. 通信技术. 2022(06): 712-719 . 百度学术
9. 王瑶,龙华,邵玉斌,杜庆治,王延凯. 基于CRNN混合神经网络的多语种识别. 光电子·激光. 2022(06): 620-628 . 百度学术
10. 张允耀,黄鹤鸣,张会云. 复杂噪声环境下语音识别研究. 计算机与现代化. 2021(09): 68-74 . 百度学术
11. 辛强伟,唐云凯. 多维度数据组合的人工智能系统性能优化分析. 数字技术与应用. 2020(10): 36-38 . 百度学术
14. 顾佳,黄明,关岳. 高速列车牵引变流器故障诊断研究. 振动.测试与诊断. 2020(05): 997-1002+1029 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 1153
- HTML全文浏览量: 4
- PDF下载量: 707
- 被引次数: 27