高级检索

    基于深度学习的图异常检测技术综述

    Survey of Deep Learning Based Graph Anomaly Detection Methods

    • 摘要: 图异常检测旨在大图或海量图数据库中寻找“陌生”或“不寻常”模式,具有广泛的应用场景.深度学习可以从数据中学习隐含的规律,在提取数据中潜在复杂模式方面表现出优越的性能.近年来随着基于深度神经网络的图表示学习取得显著进展,如何利用深度学习方法进行图异常检测引起了学术界和产业界的广泛关注.尽管最近一系列研究从图的角度对异常检测技术进行了调研,但是缺少对深度学习技术下的图异常检测技术的关注.首先给出了静态图和动态图上各类常见的异常定义,然后调研了基于深度神经网络的图表示学习方法,接着从静态图和动态图的角度出发,梳理了基于深度学习的图异常检测的研究现状,并总结了图异常检测的应用场景和相关数据集,最后讨论了图异常检测技术目前面临的挑战和未来的研究方向.

       

      Abstract: Graph anomaly detection aims to find “strange” or “unusual” patterns in large graph or massive graph databases, and it has a wide range of application scenarios. Deep learning can learn the hidden rules from the data, and it has excellent performance in extracting potential complex patterns from data. With the great development of graph representation learning in recent years, how to detect graph anomaly using deep learning methods has attracted extensive attention in the area of academia and industry. Although a series of recent studies have investigated anomaly detection methods from the perspective of graphs, there is a lack of attention to graph anomaly detection methods under the background of deep learning. In this paper, we first give the definitions of various kinds of anomalies in static graph and dynamic graph and investigate the deep neural network based graph representation learning method and its various applications in graph anomaly detection. Then we present the current situation of research on graph anomaly detection based on deep learning from the perspective of static graph and dynamic graph, and summarize the application scenarios and related data sets of graph anomaly detection. At last, we discuss the current challenges and future research directions of graph anomaly detection.

       

    /

    返回文章
    返回