Research on Spreading Mechanism of False Information in Social Networks by Motif Degree
-
摘要: 社交媒体作为信息传播的载体,既可使人们快捷地分享信息流和获取时事新闻,也可能成为虚假信息泛滥蔓延的重要渠道.现有的虚假信息检测研究多基于对微博内容的机器学习或深度学习的识别模型,忽略了真假信息传播网络的结构差异.基于复杂网络的模体理论,提出了广度模体度与深度模体度的概念来量化传播网络的结构重要指标.研究表明:基于模体度的重要性计算方法是对传统网络结构重要性指标的一种创新与拓展,能够更全面地测度传播网络结构特性.通过构建的二维模体度量化指标,分析和揭示了微博、Twitter网络中虚假信息的结构特性与传播机制:虚假信息在广度传播与深度传播共同作用下扩散,广度模体度主要作用于网络传播规模,而深度模体度影响网络结构的复杂性.基于模体度的网络特征分析,可以应用于社交媒体信息传播的早期从源头上检测虚假信息,为虚假信息检测提供了一种新颖可行的途径.Abstract: In online social networks, massive amounts of information are transmitted and diffused through users’ interaction and reposting behavior. As the carrier of information diffusion, social media can not only make people share information flow and get current affairs news quickly, but also facilitate the exchange of ideas and information between people. At the same time, it may become an important channel for the spread of false information. Most of the existing researches on false information detection are based on the recognition models of machine learning and deep learning of Weibo content, while ignoring the structural differences between true and false information networks. Therefore, based on the motif theory of complex networks, this paper puts forward the concepts of breadth and depth motif degree to quantify the structural importance of the network. The research shows that the importance calculation method based on motif degree is an innovation and expansion of traditional network structure importance index, which can measure the specificity of communication network structure more comprehensively. This paper analyzes and reveals the structure characteristics and propagation mechanism of false information in microblog network by constructing the two-dimensional motif measurement index, that is, the false information is diffused under the joint action of breadth and depth propagation, and the breadth motif mainly affects the network spread scale, while the depth motif degree affects the complexity of the network structure. Even in the early stage of information diffusion, the false news detection method based on motif features has a high prediction accuracy. The network feature analysis based on motif degree can be applied to detect false information from the source in the early stage of social media information diffusion, which provides a novel and feasible way for false information detection.
-
-
期刊类型引用(14)
1. 孙林,马天娇. 基于中心偏移的Fisher score与直觉邻域模糊熵的多标记特征选择. 计算机科学. 2024(07): 96-107 . 百度学术
2. 袁钟 ,陈红梅 ,王志红 ,李天瑞 . 利用混杂核模糊补互信息选择特征. 计算机研究与发展. 2023(05): 1111-1120 . 本站查看
3. 杨璇,马建敏,赵曼君. 基于邻域互信息的高维时序数据特征选择. 计算机工程. 2023(07): 135-142+149 . 百度学术
4. 马明艳,陈伟,吴礼发. 基于CNN_BiLSTM网络的入侵检测方法. 计算机工程与应用. 2022(10): 116-124 . 百度学术
5. 孙林,梁娜,徐久成. 基于自适应邻域互信息与谱聚类的特征选择. 山东大学学报(理学版). 2022(12): 13-24 . 百度学术
6. 刘文,米据生,孙妍. 一种新的犹豫模糊粗糙近似算子的公理刻画. 计算机研究与发展. 2021(09): 2062-2070 . 本站查看
7. 王翔,谢胜军. 加权社会网络低维冗余数据快速挖掘算法仿真. 计算机仿真. 2021(08): 372-375+477 . 百度学术
8. 张敏,彭红伟,颜晓玲. 基于神经网络的模糊决策树改进算法. 计算机工程与应用. 2021(21): 174-179 . 百度学术
9. 张仕斌,黄曦,昌燕,闫丽丽,程稳. 大数据环境下量子机器学习的研究进展及发展趋势. 电子科技大学学报. 2021(06): 802-819 . 百度学术
10. 姚晟,陈菊,吴照玉. 一种基于邻域容差信息熵的组合度量方法. 小型微型计算机系统. 2020(01): 46-50 . 百度学术
11. 徐道磊,陈培林,唐轶轩,吴尚,路宇,卞显福. 一种新的决策粗糙集最小化决策代价属性约简算法. 微电子学与计算机. 2020(08): 55-60+65 . 百度学术
12. 姚晟,吴照玉,陈菊,王维. 基于决策理论粗糙集的一种新属性约简方法. 微电子学与计算机. 2019(05): 76-81 . 百度学术
13. 段海玲,王光琼. 一种高效的复杂信息系统增量式属性约简. 华南理工大学学报(自然科学版). 2019(06): 18-30 . 百度学术
14. 龚芝,陈志伟,马凌. 不完备信息系统中一种新的不确定性度量方法. 测控技术. 2018(11): 116-119+124 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 759
- HTML全文浏览量: 8
- PDF下载量: 400
- 被引次数: 21