Privacy-Preserving Network Attack Provenance Based on Graph Convolutional Neural Network
-
摘要: APT(advanced persistent threat)攻击潜伏时间长,目的性强,会通过变种木马、勒索病毒、组建僵尸网络等手段从内部瓦解企业安全堡垒.但现有攻击溯源方法都只针对单一日志或流量数据,这导致了无法追溯多阶段攻击的完整过程.并且因为日志条目间关系复杂,日志关系图中会产生严重的状态爆炸问题,导致难以对攻击进行准确的分类识别.同时,在利用日志及流量数据进行攻击溯源过程中,很少考虑到数据隐私保护问题.为解决这些问题,提出了一种具有隐私保护的基于图卷积神经网络的攻击溯源方法.通过监督学习解决了因多日志关系连接导致的状态爆炸,对Louvain社区发现算法进行优化从而提高了检测速度及准确性,利用图卷积神经网络对攻击进行有效的分类,并结合属性基加密实现了日志数据的隐私保护.通过复现4种APT攻击测试方法来检测速度和效率.实验结果表明:该方法的检测时间最多可有90%的缩减,攻击溯源准确率可达92%.Abstract: APT(advanced persistent threat) attacks have a long incubation time and a vital purpose. It can destroy the inside’s enterprise security fortress, employing variant Trojans, ransomware, and botnet. However, the existing attack source tracing methods only target a single log or traffic data, making it impossible to trace the complete process of multi-stage attacks. Because of the complicated log relationship, serious state explosion problems will occur in the log relationship graph, making it difficult to classify and identify attacks accurately. Simultaneously, data privacy protection is rarely considered in using log and traffic data for attack tracing approaches. We propose an attack tracing method based on a Graph Convolutional Network (GCN) with user data privacy protection to solve these problems. Supervised learning solves the state explosion caused by multiple log relationship connections, optimizing the Louvain community discovery algorithm to improve detection speed and accuracy. Moreover, using map neural networks to attack classification effectively and combining privacy protection scheme leveraging CP-ABE (Ciphertext-Policy Attribute Based Encryption) properties realize log data secure sharing in public cloud. In this paper, the detection speed and efficiency of four APT attack testing methods are reproduced. Experimental results show that the detection time of this method can be reduced by 90% at most, and the accuracy can reach 92%.
-
-
期刊类型引用(12)
1. 杨秀璋,彭国军,刘思德,田杨,李晨光,傅建明. 面向APT攻击的溯源和推理研究综述. 软件学报. 2025(01): 203-252 . 百度学术
2. 季一木,张嘉铭,杨倩,杜宏煜,邵思思,张俊杰,刘尚东. 高级持续性威胁检测与分析方法研究进展. 南京邮电大学学报(自然科学版). 2025(01): 1-11 . 百度学术
3. 颜清,李金讯,陈诗. 一种多元信息流异常数据聚类修正方法与仿真. 计算机仿真. 2025(01): 258-262 . 百度学术
4. 喻皓. 基于人工智能的图卷积神经网络故障诊断方法研究. 自动化与仪器仪表. 2024(03): 72-76 . 百度学术
5. 曲鹏. 基于自适应包标记的通信网络DDoS攻击溯源方法. 网络安全技术与应用. 2024(05): 10-12 . 百度学术
6. 张婷婷,王智强. 基于支持隐私保护的网络信息安全传输仿真. 计算机仿真. 2024(05): 415-418+464 . 百度学术
7. 李伯恺. 基于优化蜂群算法的隐蔽性网络攻击行为自适应辨识模型. 电子设计工程. 2024(16): 97-101 . 百度学术
8. 胡斌,马平,王越,杨浩. 基于SIR模型的无线网络安全威胁态势量化评估算法. 吉林大学学报(信息科学版). 2024(04): 710-716 . 百度学术
9. 白磊. 多样入侵下内部网络攻击追踪溯源方法设计. 现代计算机. 2024(12): 42-46 . 百度学术
10. 曹新立,阎峻,孙领,丁晓玲. 基于深度学习与遗传算法的IoT环境多层次威胁溯源方法. 太赫兹科学与电子信息学报. 2024(12): 1394-1399 . 百度学术
11. 盛江明,薛娟,李鹏,伊娜. 基于时空图卷积神经网络的蛋白质复合物识别方法. 南方医科大学学报. 2022(07): 1075-1081 . 百度学术
12. 葛维静,冯园园,刘宗洋,许贤龙,张译,刘洋. 一种基于网络流量风险数据聚类的APT攻击溯源方法. 通信技术. 2022(10): 1354-1362 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 1044
- HTML全文浏览量: 14
- PDF下载量: 776
- 被引次数: 17