• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

网络信息生态系统中的虚假信息:检测、缓解与挑战

Amrita Bhattacharjee, 舒凯, 高旻, 刘欢

Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
引用本文: Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Citation: Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
引用本文: Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
Citation: Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979

网络信息生态系统中的虚假信息:检测、缓解与挑战

详细信息
  • 中图分类号: TP391

Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges

  • 摘要: 随着互联网的迅速发展及网络社会媒体中用户的增加,通过社会媒体发布和传播信息的真实性和质量受到日益广泛的关注.目前大部分公众已习惯从社会媒体平台与互联网获取新闻,甚至是获取受到高度关注的话题(如新冠病毒感染症状)的信息.鉴于网络信息生态系统非常嘈杂,充斥着错误和虚假信息并经常受到恶意媒介的污染,从中识别真实的信息成为一项艰巨任务.对此,研究者们已开始致力于虚假信息检测和减缓虚假信息传播影响方面的工作.讨论了网络信息生态系统中的虚假信息问题,特别是随着新冠病毒大爆发而来的“信息疫情”.随后,简述了虚假信息检测方法,分析了减缓虚假信息影响的方法,并探讨了虚假信息研究中的固有挑战.最后从跨学科角度阐述了检测和减缓虚假信息影响的方法和未来研究展望.
    Abstract: With the rapid increase in access to the internet and the subsequent growth in the population of social media users, the quality of information posted, disseminated, and consumed via these platforms is an issue of growing concern. A large fraction of the common public turn to social media platforms and, in general, the internet for news and even information regarding highly concerning issues such as COVID-19 symptoms and treatments. Given that the online information ecosystem is extremely noisy, fraught with misinformation and disinformation, and often contaminated by malicious agents spreading propaganda, identifying genuine and good quality information from disinformation is a challenging task for humans. In this regard, there is a significant amount of ongoing research in the directions of disinformation detection and mitigation. In this survey, we discuss the online disinformation problem, focusing on the recent ″infodemic″ in the wake of the coronavirus pandemic. We then proceed to discuss the inherent challenges in disinformation research, including data collection, early detection and effective mitigation, fact-checking based approaches, multi-modality approaches, and policy issues and fairness, and elaborate on the interdisciplinary approaches towards the detection and mitigation of disinformation, after a short overview of the various directions explored in computational detection and mitigation efforts.
  • 期刊类型引用(10)

    1. 杨秀璋,彭国军,刘思德,田杨,李晨光,傅建明. 面向APT攻击的溯源和推理研究综述. 软件学报. 2025(01): 203-252 . 百度学术
    2. 申国霞,常鑫. 基于可信密码模块的网络信道潜在攻击挖掘. 信息技术. 2023(10): 152-156+162 . 百度学术
    3. 谢峥,路广平,付安民. 一种可扩展的实时多步攻击场景重构方法. 信息安全研究. 2023(12): 1173-1179 . 百度学术
    4. 黄维贵,孙怡峰,欧旺,王玉宾. 基于不确定攻击图的违规外联风险分析. 信息工程大学学报. 2022(05): 570-577 . 百度学术
    5. 王文娟,杜学绘,单棣斌. 基于动态概率攻击图的云环境攻击场景构建方法. 通信学报. 2021(01): 1-17 . 百度学术
    6. 潘亚峰,朱俊虎,周天阳. APT攻击场景重构方法综述. 信息工程大学学报. 2021(01): 55-60+80 . 百度学术
    7. 罗智勇,杨旭,刘嘉辉,许瑞. 基于贝叶斯攻击图的网络入侵意图分析模型. 通信学报. 2020(09): 160-169 . 百度学术
    8. 王硕,王建华,汤光明,裴庆祺,张玉臣,刘小虎. 一种智能高效的最优渗透路径生成方法. 计算机研究与发展. 2019(05): 929-941 . 本站查看
    9. 吴东,郭春,申国伟. 一种基于多因素的告警关联方法. 计算机与现代化. 2019(06): 30-37 . 百度学术
    10. 韩宜轩,秦元庆. 基于因果关联的电力工控系统攻击场景还原. 信息技术. 2019(08): 41-44+48 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  1170
  • HTML全文浏览量:  14
  • PDF下载量:  834
  • 被引次数: 22
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回