Secure Multiparty Computation and Application in Machine Learning
-
摘要: 随着人工智能、大数据等技术的发展,数据采集、数据分析等应用日渐普及,隐私泄露问题越来越严重.数据保护技术的缺乏限制了企业之间数据的互通,导致形成“数据孤岛”.安全多方计算(secure multiparty computation, MPC)技术能够在不泄露明文的情况下实现多方参与的数据协同计算,实现安全的数据流通,达到数据“可用不可见”.隐私保护机器学习是当前MPC技术最典型也是最受关注的应用与研究领域,MPC技术的应用可以保证在不泄露用户数据隐私和服务商模型参数隐私的情况下进行训练和推理.针对MPC及其在隐私保护机器学习领域的应用进行全面的分析与总结,首先介绍了MPC的安全模型和安全目标;梳理MPC基础技术的发展脉络,包括混淆电路、不经意传输、秘密分享和同态加密;并对MPC基础技术的优缺点进行分析,提出不同技术方案的适用场景;进一步对基于MPC技术实现的隐私保护机器学习方案进行了介绍与分析;最后进行总结和展望.Abstract: With the emergence and development of artificial intelligence and big data, large-scale data collection and analysis applications have been widely deployed, which introduces the concern of privacy leakage. This privacy concern further prevents data exchanges among originations and results in “data silos”. Secure multiparty computation (MPC) allows multiple originations to perform privacy-preserving collaborative data analytics, without leaking any plaintext data during the interactions, making the data “usable but not visible”. MPC technologies have been extensively studied in the academic and engineering fields, and derive various technical branches. Privacy-preserving machine learning (PPML) is becoming a typical and widely deployed application of MPC. And various PPML schemes have been proposed to perform privacy-preserving training and inference without leaking model parameters nor sensitive data. In this paper, we systematically analyze various MPC schemes and their applications in PPML. Firstly, we list various security models and objectives, and the development of MPC primitives (i.e., garble circuit, oblivious transfer, secret sharing and homomorphic encryption). Then, we summarize the strengths and weaknesses of these primitives, and list the corresponding appropriate usage scenarios, which is followed by the thorough analysis of their applications in PPML. Finally, we point out the further research direction on MPC and their applications in PPML.
-
-
期刊类型引用(15)
1. 吴佳青,任大鹏. 我国人工智能芯片发展探析. 中国工程科学. 2025(01): 133-141 . 百度学术
2. 仝杰,齐子豪,蒲天骄,宋睿,张鋆,谈元鹏,王晓飞. 电力物联网边缘智能:概念、架构、技术及应用. 中国电机工程学报. 2024(14): 5473-5496 . 百度学术
3. 万朵,胡谋法,肖山竹,张焱. 面向边缘智能计算的异构并行计算平台综述. 计算机工程与应用. 2023(01): 15-25 . 百度学术
4. 赵二虎,吴济文,肖思莹,晋振杰,徐勇军. 嵌入式异构智能计算系统并行多流水线设计. 电子学报. 2023(11): 3354-3364 . 百度学术
5. 李秀敏,陈梓烁,陈雅琪. 我国人工智能芯片产业协同创新网络时空演化特征分析. 科技管理研究. 2023(23): 142-153 . 百度学术
6. 赵一煊,刘飞阳,高晗,王建生. DNN加速器技术发展及航空计算系统应用展望. 航空计算技术. 2022(03): 130-134 . 百度学术
7. 谢坤鹏,卢冶,靳宗明,刘义情,龚成,陈新伟,李涛. FAQ-CNN:面向量化卷积神经网络的嵌入式FPGA可扩展加速框架. 计算机研究与发展. 2022(07): 1409-1427 . 本站查看
8. 蒲明博,李向平,张杨,郑美玲,粟雅娟,曹耀宇,曹暾,徐挺,段宣明,冯帅,孙玲. 芯片制造中的光学微纳加工技术前沿与挑战. 中国科学基金. 2022(03): 460-467 . 百度学术
9. 高原,杨娇,赵凌,温川飙,张艺凡,罗悦. 运用人工神经网络技术结合穴位敏化理论探索慢性稳定性心绞痛疾病辅助预测模型的构建思路. 世界科学技术-中医药现代化. 2021(02): 628-634 . 百度学术
10. 渠鹏,陈嘉杰,张悠慧,郑纬民. 实现软硬件解耦合的类脑计算硬件设计方法. 计算机研究与发展. 2021(06): 1146-1154 . 本站查看
11. 魏东,董博晨,刘亦青. 改进神经网络的图像识别系统设计与硬件实现. 电子与信息学报. 2021(07): 1828-1833 . 百度学术
12. 张雪怡,曹哲,刘宗宝. 智能芯片技术发展综述及医疗健康领域应用. 中国集成电路. 2021(09): 16-22+36 . 百度学术
13. 郭经红,梁云,陈川,陈硕,陆阳,黄辉. 电力智能传感技术挑战及应用展望. 电力信息与通信技术. 2020(04): 15-24 . 百度学术
14. 袁烨,张永,丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状. 自动化学报. 2020(10): 2013-2030 . 百度学术
15. 赵晨,周义明. 基于FPGA的模数转换芯片AD7705/AD7706控制电路设计. 北京石油化工学院学报. 2019(04): 54-58 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 2265
- HTML全文浏览量: 24
- PDF下载量: 1464
- 被引次数: 27