计算机研究与发展 ›› 2021, Vol. 58 ›› Issue (12): 2618-2629.doi: 10.7544/issn1000-1239.2021.20211021
所属专题: 2021可解释智能学习方法及其应用专题
刘坤佳,李欣奕,唐九阳,赵翔
Liu Kunjia, Li Xinyi, Tang Jiuyang, Zhao Xiang
摘要: 知识追踪任务通过建模用户的习题作答序列跟踪其认知状态,进而预测其下一时刻的答题情况,实现对用户知识掌握程度的智能评估.当前知识追踪方法多针对知识点建模,忽略了习题信息建模与用户个性化表征,并且对于预测结果缺乏可解释性.针对以上问题,提出了一个可解释的深度知识追踪框架.首先引入习题的上下文信息挖掘习题与知识点间的隐含关系,得到更有表征能力的习题与知识点表示,缓解数据稀疏问题.接着建模用户答题序列获得其当前知识状态,并以此学习个性化注意力,进而得到当前习题基于用户知识状态的个性化表示.最后,对于预测结果,依据个性化注意力选择一条推理路径作为其解释.相较于现有方法,所提模型不仅取得了更好的预测结果,还能为预测结果提供推理路径层面的解释,体现了其优越性.
中图分类号: