计算机研究与发展 ›› 2022, Vol. 59 ›› Issue (8): 1694-1722.doi: 10.7544/issn1000-1239.20211264
所属专题: 2022数据挖掘前沿进展专题
马昂1,于艳华1,杨胜利2,石川1,李劼1,蔡修秀1
Ma Ang1, Yu Yanhua1, Yang Shengli2, Shi Chuan1, Li Jie1, Cai Xiuxiu1
摘要: 知识图谱是一种用图结构建模事物及事物间联系的数据表示形式,是实现认知智能的重要基础,得到了学术界和工业界的广泛关注.知识图谱的研究内容主要包括知识表示、知识抽取、知识融合、知识推理4部分.目前,知识图谱的研究还存在一些挑战.例如,知识抽取面临标注数据获取困难而远程监督训练样本存在噪声问题,知识推理的可解释性和可信赖性有待进一步提升,知识表示方法依赖人工定义的规则或先验知识,知识融合方法未能充分建模实体之间的相互依赖关系等问题.由环境驱动的强化学习算法适用于贯序决策问题.通过将知识图谱的研究问题建模成路径(序列)问题,应用强化学习方法,可解决知识图谱中的存在的上述相关问题,具有重要应用价值.首先梳理了知识图谱和强化学习的基础知识.其次,对基于强化学习的知识图谱相关研究进行全面综述.再次,介绍基于强化学习的知识图谱方法如何应用于智能推荐、对话系统、游戏攻略、生物医药、金融、安全等实际领域.最后,对知识图谱与强化学习相结合的未来发展方向进行展望.
中图分类号: