A Construction for Social Network on the Basis of Project Cooperation
-
摘要: 目前,基于论文合作关系的科学研究人员社会关系网络得到了极大的关注,但是存在实体识别不准确、数据更新不及时等数据质量问题.有鉴于此,提出利用历年项目申请书的合作关系,同时将实体识别问题归结为一个聚类问题,证明该问题的计算复杂度,然后提出了算法来解决该问题,最后在真实数据上验证算法的效率.Abstract: For the time being, the social network based on paper cooperation has gained a great deal of attention, but there exists inaccurate entity recognition, failing to update data in time, and uncertain data quality etc. In view of this, this paper puts forward the cooperation on the basis of the history project application, and the problem of the entity recognition attributes to a clustering problem. The computational complexity of the problem is proved. Then the algorithm is proposed to settle the problem. Finally, the efficiency of the algorithm is verified by the experiments on real data.
-
-
期刊类型引用(5)
1. 王明,张倩. 我国基于深度学习的图像识别技术在农作物病虫害识别中的研究进展. 中国蔬菜. 2023(03): 22-28 . 百度学术
2. 覃伟荣,劳燕玲. 基于3D关联规则深度学习的异构遥感数据检测. 计算机仿真. 2023(09): 482-486 . 百度学术
3. 吕晓洁. 基于深度学习的分布式光伏发电系统电压稳定性评估. 电子设计工程. 2022(17): 114-118 . 百度学术
4. 宋美佳,贾鹤鸣,林志兴,卢仁盛,刘庆鑫. 自适应学习率梯度下降的优化算法. 三明学院学报. 2021(06): 36-44 . 百度学术
5. 郑俊浩. 基于深度学习的乳腺癌MRI影像预处理. 智能计算机与应用. 2020(01): 231-232+236 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 1094
- HTML全文浏览量: 0
- PDF下载量: 763
- 被引次数: 11