• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于概率分布的多峰演化算法

陈伟能, 杨强

陈伟能, 杨强. 基于概率分布的多峰演化算法[J]. 计算机研究与发展, 2017, 54(6): 1185-1197. DOI: 10.7544/issn1000-1239.2017.20160891
引用本文: 陈伟能, 杨强. 基于概率分布的多峰演化算法[J]. 计算机研究与发展, 2017, 54(6): 1185-1197. DOI: 10.7544/issn1000-1239.2017.20160891
Chen Weineng, Yang Qiang. Probability Distribution Based Evolutionary Computation Algorithms for Multimodal Optimization[J]. Journal of Computer Research and Development, 2017, 54(6): 1185-1197. DOI: 10.7544/issn1000-1239.2017.20160891
Citation: Chen Weineng, Yang Qiang. Probability Distribution Based Evolutionary Computation Algorithms for Multimodal Optimization[J]. Journal of Computer Research and Development, 2017, 54(6): 1185-1197. DOI: 10.7544/issn1000-1239.2017.20160891
陈伟能, 杨强. 基于概率分布的多峰演化算法[J]. 计算机研究与发展, 2017, 54(6): 1185-1197. CSTR: 32373.14.issn1000-1239.2017.20160891
引用本文: 陈伟能, 杨强. 基于概率分布的多峰演化算法[J]. 计算机研究与发展, 2017, 54(6): 1185-1197. CSTR: 32373.14.issn1000-1239.2017.20160891
Chen Weineng, Yang Qiang. Probability Distribution Based Evolutionary Computation Algorithms for Multimodal Optimization[J]. Journal of Computer Research and Development, 2017, 54(6): 1185-1197. CSTR: 32373.14.issn1000-1239.2017.20160891
Citation: Chen Weineng, Yang Qiang. Probability Distribution Based Evolutionary Computation Algorithms for Multimodal Optimization[J]. Journal of Computer Research and Development, 2017, 54(6): 1185-1197. CSTR: 32373.14.issn1000-1239.2017.20160891

基于概率分布的多峰演化算法

基金项目: 国家自然科学基金优秀青年科学基金项目(61622206);国家自然科学基金面上项目(61379061)
详细信息
  • 中图分类号: TP3-0

Probability Distribution Based Evolutionary Computation Algorithms for Multimodal Optimization

  • 摘要: 演化算法通过模拟自然界生物迭代演化的智能现象来求解优化问题,因其不依赖于待解问题具体数学模型特性的优势,已成为求解复杂优化问题的重要方法.分布估计算法是一类新兴的演化算法,它通过估计种群中优势个体的分布状况建立概率模型并采样得到子代,具有良好的搜索多样性,且能通用于连续和离散空间的优化问题.为进一步推动基于概率分布思想的演化算法发展,概述了多峰优化演化算法的研究现状,并总结出2个基于概率分布的演化算法框架:面向多解优化的概率分布演化算法框架和基于概率分布的集合型离散演化算法框架.前者针对现有的演化算法在求解多峰多解的优化难题时缺乏足够的搜索多样性的缺点,将广义上基于概率分布的演化策略与小生境技术相结合,突破多解优化的搜索多样性瓶颈;后者围绕粒子群优化等部分演化算法在传统上局限于连续实数向量空间的不足,引入概率分布估计的思想,在离散的集合空间重定义了算法的演化操作,从而提高了算法的可用性.
    Abstract: Evolutionary computation (EC) is a category of algorithms which simulate the intelligent evolutionary behavior in nature for solving optimization problems. As EC algorithms do not rely on the mathematical characteristics of the problem model, they have been regarded as an important tool for complex optimization. Estimation of distribution algorithm (EDA) is a new class of EC algorithms, which works by constructing a probability model to estimate the distribution of the predominant individuals in the population, and sampling new individuals based on the probability model. With this probability-based search behavior, EDA is good at maintaining sufficient search diversity, and is applicable in both continuous and discrete search space. In order to promote the research of probability-based EC (PBEC) algorithms, this paper gives a survey on EC algorithms for multimodal optimization, and then further builds two frameworks for PBEC: PBEC framework for seeking multiple solutions in multimodal optimization, and PBEC framework for discrete optimization. The first framework presents a method to combine probability-based evolutionary operators with the niching strategy, so that higher search diversity can be maintained for seeking multiple solutions in multimodal optimization. In particular, the framework understands PBEC algorithms in a broad sense, that is, it allows both explicit PBEC algorithms (e.g. EDA) and implicit PBEC algorithms (e.g. ant colony optimization) to operate in the framework, resulting in two representative algorithms: multimodal EDA (MEDA) and adaptive multimodal ant colony optimization (AM-ACO). The second framework aims at extending the applicability of EC algorithms on both continuous and discrete space. Since some popular EC algorithms are originally defined on continuous real vector space and they cannot be directly used to solve discrete optimization problems, this framework introduces the idea of probability distribution based evolution and redefines their evolutionary operators on discrete set space. As a result, the applicability of these algorithms can be significantly improved.
  • 期刊类型引用(13)

    1. 程巍,王红英,娄岩. 基于“5G云+VR”的心脏解剖虚拟仿真教学系统的构建与应用. 中国医学教育技术. 2025(02): 223-228 . 百度学术
    2. 费星瑞,谢逸. 基于HMM-NN的用户点击流识别. 计算机科学. 2022(07): 340-349 . 百度学术
    3. 王同贺,华昊辰,曹军威. 共识边缘计算及其在能源互联网中的应用. 电力建设. 2021(02): 116-125 . 百度学术
    4. 柴艳娜. 内核网络堆栈的Go语言实现与分析. 电子设计工程. 2021(13): 34-37+42 . 百度学术
    5. 樊琦,李卓,陈昕. 基于边缘计算的分支神经网络模型推断延迟优化. 计算机应用. 2020(02): 342-346 . 百度学术
    6. 向安玲,杨钰雯. 边缘计算在传媒领域的应用. 中国传媒科技. 2020(03): 113-116 . 百度学术
    7. 常国锋. 基于信任域的环形网络介质访问时延控制仿真. 计算机仿真. 2020(03): 349-353 . 百度学术
    8. 董召杰,林志达. 基于边缘计算的机巡图像缺陷识别算法研究. 自动化与仪器仪表. 2020(07): 77-80 . 百度学术
    9. 张翠芳,姬楠楠. 基于模糊矩阵的多线程网络通信延迟检测技术研究. 科学技术与工程. 2020(27): 11198-11203 . 百度学术
    10. 华昊辰,李宇童,王同贺,秦兆铭,曹军威. 一种基于混合随机H_2/H_∞方法的能源互联网边缘计算系统控制策略. 中国电机工程学报. 2020(21): 6875-6885 . 百度学术
    11. 闫朝峰,刘清莉. 王者荣耀业务网络感知保障浅析. 通讯世界. 2019(09): 81-82 . 百度学术
    12. 肖文华,刘必欣,刘巍,程钢,王跃华. 面向恶劣环境的边缘计算综述. 指挥与控制学报. 2019(03): 181-190 . 百度学术
    13. 丁祥海,王志会. 边缘计算在计算机科学方向的进展研究. 信息与管理研究. 2019(06): 73-83 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1808
  • HTML全文浏览量:  3
  • PDF下载量:  1176
  • 被引次数: 19
出版历程
  • 发布日期:  2017-05-31

目录

    /

    返回文章
    返回