• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

大规模时序图数据的查询处理与挖掘技术综述

王一舒, 袁野, 刘萌, 王国仁

王一舒, 袁野, 刘萌, 王国仁. 大规模时序图数据的查询处理与挖掘技术综述[J]. 计算机研究与发展, 2018, 55(9): 1889-1902. DOI: 10.7544/issn1000-1239.2018.20180132
引用本文: 王一舒, 袁野, 刘萌, 王国仁. 大规模时序图数据的查询处理与挖掘技术综述[J]. 计算机研究与发展, 2018, 55(9): 1889-1902. DOI: 10.7544/issn1000-1239.2018.20180132
Wang Yishu, Yuan Ye, Liu Meng, Wang Guoren. Survey of Query Processing and Mining Techniques over Large Temporal Graph Database[J]. Journal of Computer Research and Development, 2018, 55(9): 1889-1902. DOI: 10.7544/issn1000-1239.2018.20180132
Citation: Wang Yishu, Yuan Ye, Liu Meng, Wang Guoren. Survey of Query Processing and Mining Techniques over Large Temporal Graph Database[J]. Journal of Computer Research and Development, 2018, 55(9): 1889-1902. DOI: 10.7544/issn1000-1239.2018.20180132
王一舒, 袁野, 刘萌, 王国仁. 大规模时序图数据的查询处理与挖掘技术综述[J]. 计算机研究与发展, 2018, 55(9): 1889-1902. CSTR: 32373.14.issn1000-1239.2018.20180132
引用本文: 王一舒, 袁野, 刘萌, 王国仁. 大规模时序图数据的查询处理与挖掘技术综述[J]. 计算机研究与发展, 2018, 55(9): 1889-1902. CSTR: 32373.14.issn1000-1239.2018.20180132
Wang Yishu, Yuan Ye, Liu Meng, Wang Guoren. Survey of Query Processing and Mining Techniques over Large Temporal Graph Database[J]. Journal of Computer Research and Development, 2018, 55(9): 1889-1902. CSTR: 32373.14.issn1000-1239.2018.20180132
Citation: Wang Yishu, Yuan Ye, Liu Meng, Wang Guoren. Survey of Query Processing and Mining Techniques over Large Temporal Graph Database[J]. Journal of Computer Research and Development, 2018, 55(9): 1889-1902. CSTR: 32373.14.issn1000-1239.2018.20180132

大规模时序图数据的查询处理与挖掘技术综述

基金项目: 国家自然科学基金优秀青年科学基金项目(61622202);国家自然科学基金项目(61732003,61572119);中央高校基本科研业务费专项资金(N150402005,N171607010) This work was supported by the National Natural Science Foundation of China for Excellent Young Scientists (61622202), the National Natural Science Foundation of China (61732003, 61572119), and the Fundamental Research Funds for the Central Universities (N150402005,N171607010).
详细信息
  • 中图分类号: TP311

Survey of Query Processing and Mining Techniques over Large Temporal Graph Database

  • 摘要: 时序图作为一种带有时间维度的图结构,在图数据的查询处理与挖掘工作中扮演着越来越重要的角色.与传统的静态图不同,时序图的结构会随时间序列发生改变,即时序图的边由时间激活.而且由于时序图上每条边都有记录时间的标签,所以时序图包含的信息量相较于静态图也更为庞大,这使得现有的数据查询处理方法不能很好地应用于时序图中.因此如何解决时序图上的数据查询处理与挖掘问题得到研究者们的关注.对现有的时序图上的查询处理与挖掘方法进行了综述,详细介绍了时序图的应用背景和基本定义,梳理了现有的时序图模型,并从图查询处理方法、图挖掘方法和时序图管理系统3个方面对时序图上现有的工作进行了详细的介绍和分析.最后对时序图上可能的研究方向进行了展望,为相关研究提供参考.
    Abstract: A temporal graph, as a graph structure with time dimension, plays a more and more important role in query processing and mining of graph data. Different with the traditional static graph, structure of the temporal graph changes with the time series, that is to say the edge of temporal graph is activated by time. And each edge of the temporal graph has the label of recording time, which makes the temporal graph contain more information than the static graph, so the existing data query processing methods cannot be used in the temporal graph. Therefore how to solve the problem of query processing and mining on the temporal graph has attracted much attention of researchers. This paper summarizes the existing query processing and mining methods on temporal graphs. Firstly, this paper gives the application background and basic definition of temporal graph, and combs the existing three typical models which are used to model temporal graph in the existing works. Secondly, this paper introduces and analyzes the existing work on temporal graph from three aspects: graph query processing method, graph mining method and temporal graph management system. Finally, the possible research directions on temporal graph are prospected to provide reference for related research.
  • 期刊类型引用(11)

    1. 李源,林秋兰,陈安之,杨国利,宋威,王国仁. 基于树分解的时序最短路径计数查询算法. 计算机应用. 2024(08): 2446-2454 . 百度学术
    2. 张千桢,郭得科,赵翔. 面向时序图的季节突发性子图挖掘算法. 软件学报. 2024(12): 5526-5543 . 百度学术
    3. 梁锐杰,程永利. 基于NUMA延迟发送的时变图弱连通分量求解. 计算机系统应用. 2023(03): 322-329 . 百度学术
    4. 许成伟,邹晓红. 基于时序图的替补种子节点挖掘算法研究. 燕山大学学报. 2023(05): 433-440 . 百度学术
    5. 李凤英,申会强,董荣胜. 基于k~d-MDD的时序图紧凑表示. 计算机研究与发展. 2022(06): 1286-1296 . 本站查看
    6. 邹晓红,许成伟,陈晶,宋彪,王明月. 大规模时序图中种子节点挖掘算法研究. 通信学报. 2022(09): 157-168 . 百度学术
    7. 胡艳. 基于循环神经网络和卡尔曼滤波器的多变量混沌时间序列预测. 计算机应用与软件. 2021(04): 281-287+323 . 百度学术
    8. 何珍文,吴冲龙,刘刚,田宜平,张夏林,陈麒玉. 地学时序大数据的相似性度量与索引方法综述. 地质科技通报. 2020(04): 44-50 . 百度学术
    9. 潘敏佳,李荣华,赵宇海,王国仁. 面向时序图数据的快速环枚举算法. 软件学报. 2020(12): 3823-3835 . 百度学术
    10. 周翔,蔡声镇. 基于粒度计算的大数据集频繁项挖掘方法. 计算机仿真. 2020(12): 287-290+464 . 百度学术
    11. 徐超,林友勇,李少利. 物联数据建模分析框架探讨. 智能物联技术. 2019(03): 9-13 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  1900
  • HTML全文浏览量:  8
  • PDF下载量:  752
  • 被引次数: 31
出版历程
  • 发布日期:  2018-08-31

目录

    /

    返回文章
    返回