• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于深度学习的数字几何处理与分析技术研究进展

夏清, 李帅, 郝爱民, 赵沁平

夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
引用本文: 夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
Citation: Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709
引用本文: 夏清, 李帅, 郝爱民, 赵沁平. 基于深度学习的数字几何处理与分析技术研究进展[J]. 计算机研究与发展, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709
Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709
Citation: Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. CSTR: 32373.14.issn1000-1239.2019.20180709

基于深度学习的数字几何处理与分析技术研究进展

详细信息
  • 中图分类号: TP391

Deep Learning for Digital Geometry Processing and Analysis: A Review

  • 摘要: 随着各种硬件传感器以及重建技术的快速发展,数字几何模型成为继音频、图像、视频之后的第4代数字媒体,并在多个领域得到广泛应用.传统的数字几何分析和处理方法主要建立在手工定义的模型特征之上,这类方法只对特定问题或者在特定条件下才有效.而深度学习,尤其是神经网络模型,在自然语言处理和图像处理方面的成功,展示了它作为数据特征提取工具的强大能力,因此越来越多地被用在数字几何处理领域.对近年来基于深度学习的数字几何处理与分析技术进行了综述,重点分析了模型匹配与检索、模型分类与分割、模型生成、模型修复与重建以及模型变形与编辑中的相关技术国内外最新研究进展,并指出了存在的主要问题和发展方向.
    Abstract: With the rapid development of various hardware sensors and reconstruction technologies, digital geometric models have become the fourth generation of digital multimedia after audio, image and video, and have been widely used in many fields. Traditional digital geometry processing and analysis are mainly based on manually defined features that can only be valid for specific problems or under specific conditions. The deep learning, especially the neural network model, in the success of natural language processing and image processing demonstrates its powerful ability as a feature extraction tool for data analysis, and is therefore gradually used in the field of digital geometry processing. In this paper, we review the works of digital geometry processing and analysis based on deep learning in recent years, carefully analyze the research progress of shape matching and retrieval, shape classification and segmentation, shape generation, shape completion and reconstruction and shape deformation and editing, and also point out some existing problems and a few possible directions of future works.
  • 期刊类型引用(10)

    1. 杜金明,孙媛媛,林鸿飞,杨亮. 融入知识图谱和课程学习的对话情绪识别. 计算机研究与发展. 2024(05): 1299-1309 . 本站查看
    2. 纪鑫,武同心,王宏刚,杨智伟,何禹德,赵晓龙. 基于多通道图神经网络的属性聚合式实体对齐. 北京航空航天大学学报. 2024(09): 2791-2799 . 百度学术
    3. 陈富强,寇嘉敏,苏利敏,李克. 基于图神经网络的多信息优化实体对齐模型. 计算机科学. 2023(03): 34-41 . 百度学术
    4. 刘璐,飞龙,高光来. 基于多视图知识表示和神经网络的旅游领域实体对齐方法. 计算机应用研究. 2023(04): 1044-1051 . 百度学术
    5. 安靖,司光亚,周杰,韩旭. 基于知识图谱的仿真想定智能生成方法. 指挥与控制学报. 2023(01): 103-109 . 百度学术
    6. 孙泽群,崔员宁,胡伟. 基于链接实体回放的多源知识图谱终身表示学习. 软件学报. 2023(10): 4501-4517 . 百度学术
    7. 时慧芳. 融合高速路门机制的跨语言实体对齐研究. 现代电子技术. 2023(20): 167-172 . 百度学术
    8. 张富,杨琳艳,李健伟,程经纬. 实体对齐研究综述. 计算机学报. 2022(06): 1195-1225 . 百度学术
    9. 姜亚莉,戴齐,刘捷. 基于交叉图匹配和双向自适应迭代的实体对齐. 信息与电脑(理论版). 2022(20): 201-204 . 百度学术
    10. 王小鹏. 基于知识图谱的择优分段迭代式实体对齐方法研究. 信息与电脑(理论版). 2021(18): 48-52 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  2191
  • HTML全文浏览量:  9
  • PDF下载量:  1074
  • 被引次数: 25
出版历程
  • 发布日期:  2018-12-31

目录

    /

    返回文章
    返回