• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

实体关系抽取方法研究综述

李冬梅, 张扬, 李东远, 林丹琼

李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. DOI: 10.7544/issn1000-1239.2020.20190358
引用本文: 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. DOI: 10.7544/issn1000-1239.2020.20190358
Li Dongmei, Zhang Yang, Li Dongyuan, Lin Danqiong. Review of Entity Relation Extraction Methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448. DOI: 10.7544/issn1000-1239.2020.20190358
Citation: Li Dongmei, Zhang Yang, Li Dongyuan, Lin Danqiong. Review of Entity Relation Extraction Methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448. DOI: 10.7544/issn1000-1239.2020.20190358
李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. CSTR: 32373.14.issn1000-1239.2020.20190358
引用本文: 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. CSTR: 32373.14.issn1000-1239.2020.20190358
Li Dongmei, Zhang Yang, Li Dongyuan, Lin Danqiong. Review of Entity Relation Extraction Methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448. CSTR: 32373.14.issn1000-1239.2020.20190358
Citation: Li Dongmei, Zhang Yang, Li Dongyuan, Lin Danqiong. Review of Entity Relation Extraction Methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448. CSTR: 32373.14.issn1000-1239.2020.20190358

实体关系抽取方法研究综述

基金项目: 国家自然科学基金项目(61772078);北京市重点研发计划项目(D171100001817003)
详细信息
  • 中图分类号: TP18; TP391

Review of Entity Relation Extraction Methods

Funds: This work was supported by the National Natural Science Foundation of China (61772078) and the Key Research and Development Program of Beijing (D171100001817003).
  • 摘要: 在自然语言处理领域,信息抽取一直以来受到人们的关注.信息抽取主要包括3项子任务:实体抽取、关系抽取和事件抽取,而关系抽取是信息抽取领域的核心任务和重要环节.实体关系抽取的主要目标是从自然语言文本中识别并判定实体对之间存在的特定关系,这为智能检索、语义分析等提供了基础支持,有助于提高搜索效率,促进知识库的自动构建.综合阐述了实体关系抽取的发展历史,介绍了常用的中文和英文关系抽取工具和评价体系.主要从4个方面展开介绍了实体关系抽取方法,包括:早期的传统关系抽取方法、基于传统机器学习、基于深度学习和基于开放领域的关系抽取方法,总结了在不同历史阶段的主流研究方法以及相应的代表性成果,并对各种实体关系抽取技术进行对比分析.最后,对实体关系抽取的未来重点研究内容和发展趋势进行了总结和展望.
    Abstract: There is a phenomenon that information extraction has long been concerned by a lot of research works in the field of natural language processing. Information extraction mainly includes three sub-tasks: entity extraction, relation extraction and event extraction, among which relation extraction is the core mission and a great significant part of information extraction. Furthermore, the main goal of entity relation extraction is to identify and determine the specific relation between entity pairs from plenty of natural language texts, which provides fundamental support for intelligent retrieval, semantic analysis, etc, and improves both search efficiency and the automatic construction of the knowledge base. Then, we briefly expound the development of entity relation extraction and introduce several tools and evaluation systems of relation extraction in both Chinese and English. In addition, four main methods of entity relation extraction are mentioned in this paper, including traditional relation extraction methods, and other three methods respectively based on traditional machine learning, deep learning and open domain. What is more important is that we summarize the mainstream research methods and corresponding representative results in different historical stages, and conduct contrastive analysis concerning different entity relation extraction methods. In the end, we forecast the contents and trend of future research.
  • 期刊类型引用(7)

    1. 李皎,张秀山,宁远航. 降低跨分片交易比例的区块链分片方法. 计算机应用. 2024(06): 1889-1896 . 百度学术
    2. 张驰骋,李雷孝,杜金泽,史建平. 可编辑区块链研究综述. 计算机工程与应用. 2024(18): 32-49 . 百度学术
    3. 孙林昆,蒋文保,郭阳楠,李春强. 基于密码累加器的无状态区块链性能优化. 计算机工程. 2023(02): 46-53 . 百度学术
    4. 姜承扬,庞俊,贾大宇,于明鹤,信俊昌,刘晨. 结合社区发现和局部恢复码的区块链扩容研究. 计算机工程与应用. 2023(05): 297-304 . 百度学术
    5. 邓文丽,方欢. 基于健康数据库的无状态区块链在医疗保健的应用. 哈尔滨商业大学学报(自然科学版). 2023(04): 408-412 . 百度学术
    6. 刘孝保,孙海彬,阴艳超,姚廷强,杨林. 面向制造业产业链图状区块链模型. 计算机集成制造系统. 2023(12): 4267-4281 . 百度学术
    7. 傅丽玉,陆歌皓,吴义明,罗娅玲. 区块链技术的研究及其发展综述. 计算机科学. 2022(S1): 447-461+666 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  5108
  • HTML全文浏览量:  13
  • PDF下载量:  4536
  • 被引次数: 21
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回