• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种基于智能手机传感器数据的地图轮廓生成方法

陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙

陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507. DOI: 10.7544/issn1000-1239.2020.20190605
引用本文: 陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507. DOI: 10.7544/issn1000-1239.2020.20190605
Tao Tao, Sun Yu’e, Chen Dongmei, Yang Wenjian, Huang He, Luo Yonglong. A Method of Map Outlines Generation Based on Smartphone Sensor Data[J]. Journal of Computer Research and Development, 2020, 57(7): 1490-1507. DOI: 10.7544/issn1000-1239.2020.20190605
Citation: Tao Tao, Sun Yu’e, Chen Dongmei, Yang Wenjian, Huang He, Luo Yonglong. A Method of Map Outlines Generation Based on Smartphone Sensor Data[J]. Journal of Computer Research and Development, 2020, 57(7): 1490-1507. DOI: 10.7544/issn1000-1239.2020.20190605
陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507. CSTR: 32373.14.issn1000-1239.2020.20190605
引用本文: 陶涛, 孙玉娥, 陈冬梅, 杨文建, 黄河, 罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法[J]. 计算机研究与发展, 2020, 57(7): 1490-1507. CSTR: 32373.14.issn1000-1239.2020.20190605
Tao Tao, Sun Yu’e, Chen Dongmei, Yang Wenjian, Huang He, Luo Yonglong. A Method of Map Outlines Generation Based on Smartphone Sensor Data[J]. Journal of Computer Research and Development, 2020, 57(7): 1490-1507. CSTR: 32373.14.issn1000-1239.2020.20190605
Citation: Tao Tao, Sun Yu’e, Chen Dongmei, Yang Wenjian, Huang He, Luo Yonglong. A Method of Map Outlines Generation Based on Smartphone Sensor Data[J]. Journal of Computer Research and Development, 2020, 57(7): 1490-1507. CSTR: 32373.14.issn1000-1239.2020.20190605

一种基于智能手机传感器数据的地图轮廓生成方法

基金项目: 国家自然科学基金面上项目(61672369,61873177,61572342);网络与信息安全安徽省重点实验室开放课题(AHNIS2019003);江苏高校优势学科建设工程资助项目
详细信息
  • 中图分类号: TP391

A Method of Map Outlines Generation Based on Smartphone Sensor Data

Funds: This work was supported by the General Program of the National Natural Science Foundation of China (61672369, 61873177, 61572342), the Open Project of Anhui Provincial Key Laboratory of Network and Information Security (AHNIS2019003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
  • 摘要: 近年来,随着社会经济的不断发展,许多商业服务以及旅游出行活动对环境地图的依赖越来越大.传统的地图生成方法主要基于车辆驱动型的GPS设备进行数据的采集和路网的构建.然而该类方法存在精度低、时效性差等缺点,并且该类方法对于一些采集设备难以到达或者GPS信号弱的地带无法进行地图的构建.为了解决上述问题,提出了通过挖掘广泛普及的智能手机内部传感器数据进行地图构建的思想,并基于该思想提出了一种数据融合算法.该算法基于智能手机采集的行人步行数据,利用机器学习分类算法与信号处理技术进行行进状态的识别,采用分段机制结合动态时间规整算法进行转向情况的处理,通过融合有效状态下行进的距离数据和方向数据,最终生成局部地图轮廓.将所提算法在真实路网采集的数据上进行实验,实验结果证明了所提方法对局部地图轮廓构建的有效性以及深入挖掘传感器数据的可行性.
    Abstract: With the development of the economy, environmental maps are becoming more and more important to our daily lives. The existing mechanisms of map generation are mainly based on vehicle-driven GPS equipment for data acquisition and road network construction. However, these methods have the disadvantages of low precision and poor efficiency, and the methods cannot construct the map for some areas where the acquisition equipment is difficult to reach or the GPS signal is weak. In order to solve the problems mentioned above, this paper proposes an idea of constructing a map through mining the sensor data generated by the widely used smartphones. Based on this idea, a data fusion algorithm is proposed. Firstly, the machine learning classification algorithm and signal processing technology are used to identify the traveling state. And then, the segmentation mechanism is combined with the dynamic time warping algorithm to process the steering segment. Finally, the local map outline is generated by the fusion of the distance data and direction data of the effective segment. The experimental results based on the data collected from the real road network prove the effectiveness of the proposed method in the construction of local map outlines and the feasibility of deep mining sensor data.
  • 期刊类型引用(10)

    1. 杜金明,孙媛媛,林鸿飞,杨亮. 融入知识图谱和课程学习的对话情绪识别. 计算机研究与发展. 2024(05): 1299-1309 . 本站查看
    2. 纪鑫,武同心,王宏刚,杨智伟,何禹德,赵晓龙. 基于多通道图神经网络的属性聚合式实体对齐. 北京航空航天大学学报. 2024(09): 2791-2799 . 百度学术
    3. 陈富强,寇嘉敏,苏利敏,李克. 基于图神经网络的多信息优化实体对齐模型. 计算机科学. 2023(03): 34-41 . 百度学术
    4. 刘璐,飞龙,高光来. 基于多视图知识表示和神经网络的旅游领域实体对齐方法. 计算机应用研究. 2023(04): 1044-1051 . 百度学术
    5. 安靖,司光亚,周杰,韩旭. 基于知识图谱的仿真想定智能生成方法. 指挥与控制学报. 2023(01): 103-109 . 百度学术
    6. 孙泽群,崔员宁,胡伟. 基于链接实体回放的多源知识图谱终身表示学习. 软件学报. 2023(10): 4501-4517 . 百度学术
    7. 时慧芳. 融合高速路门机制的跨语言实体对齐研究. 现代电子技术. 2023(20): 167-172 . 百度学术
    8. 张富,杨琳艳,李健伟,程经纬. 实体对齐研究综述. 计算机学报. 2022(06): 1195-1225 . 百度学术
    9. 姜亚莉,戴齐,刘捷. 基于交叉图匹配和双向自适应迭代的实体对齐. 信息与电脑(理论版). 2022(20): 201-204 . 百度学术
    10. 王小鹏. 基于知识图谱的择优分段迭代式实体对齐方法研究. 信息与电脑(理论版). 2021(18): 48-52 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  978
  • HTML全文浏览量:  2
  • PDF下载量:  318
  • 被引次数: 25
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回