• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于迭代稀疏训练的轻量化无人机目标检测算法

侯鑫, 曲国远, 魏大洲, 张佳程

侯鑫, 曲国远, 魏大洲, 张佳程. 基于迭代稀疏训练的轻量化无人机目标检测算法[J]. 计算机研究与发展, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986
引用本文: 侯鑫, 曲国远, 魏大洲, 张佳程. 基于迭代稀疏训练的轻量化无人机目标检测算法[J]. 计算机研究与发展, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986
Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986
Citation: Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986
侯鑫, 曲国远, 魏大洲, 张佳程. 基于迭代稀疏训练的轻量化无人机目标检测算法[J]. 计算机研究与发展, 2022, 59(4): 882-893. CSTR: 32373.14.issn1000-1239.20200986
引用本文: 侯鑫, 曲国远, 魏大洲, 张佳程. 基于迭代稀疏训练的轻量化无人机目标检测算法[J]. 计算机研究与发展, 2022, 59(4): 882-893. CSTR: 32373.14.issn1000-1239.20200986
Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. CSTR: 32373.14.issn1000-1239.20200986
Citation: Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. CSTR: 32373.14.issn1000-1239.20200986

基于迭代稀疏训练的轻量化无人机目标检测算法

基金项目: 国家重点研发计划项目(2018YFC0809300,2107YFB0202105,2016YFB0200803,2017YFB0202302);国家自然科学基金项目(61972376);北京市自然科学基金项目(L182053)
详细信息
  • 中图分类号: TP391

A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training

Funds: This work was supported by the National Key Basic Research and Development Program of China (2018YFC0809300, 2107YFB0202105, 2016YFB0200803, 2017YFB0202302), the National Natural Science Foundation of China (61972376), and the Beijing Natural Science Foundation (L182053).
  • 摘要: 随着无人机技术的成熟,配备摄像头的无人机被广泛应用于各个领域,自动高效地分析和理解从无人机收集的视觉数据非常重要.基于深度卷积神经网络的目标检测算法在许多实际应用上取得了惊人的成绩,但往往伴随着巨大的资源消耗和内存占用.因此,对于无人机上携带的计算能力受限的嵌入式设备来说,直接运行深度卷积神经网络非常具有挑战性.为了应对这些挑战,以经典的目标检测方法YOLOv3(you only look once)为例,基于迭代稀疏训练的剪枝方式可以实现有效的模型压缩,同时通过组合不同数据增强方式与相关优化手段保证压缩前后检测器精度误差在可接受范围内.实验结果证明,基于迭代稀疏训练的剪枝方法在YOLOv3上取得了非常可观的压缩效果,并且将精度误差控制在了2%以内,为无人机目标检测实时应用提供了支持.
    Abstract: With the maturity of UAV (unmanned aerial vehicle) technology, vehicles equipped with cameras are widely used in various fields, such as security and surveillance, aerial photography and infrastructure inspection. It is important to automatically and efficiently analyze and understand the visual data collected from vehicles. The object detection algorithm based on deep convolutional neural network has made amazing achievements in many practical applications, but it is often accompanied by great resource consumption and memory occupation. Thus, it is challenging to run deep convolutional neural networks directly on embedded devices with limited computing power carried by vehicles, which leads to high latency. In order to meet these challenges, a novel pruning algorithm based on iterative sparse training is proposed to improve the computational effectiveness of the classic object detection network YOLOv3 (you only look once). At the same time, different data enhancement methods and related optimization means are combined to ensure that the precision error of the detector before and after compression is within an acceptable range. Experimental results indicate that the pruning scheme based on iterative sparse training proposed in this paper achieves a considerable compression rate of YOLOv3 within slightly decline in precision. The original YOLOv3 model contains 61.57 MB weights and requires 139.77GFLOPS(floating-point operations). With 98.72% weights and 90.03% FLOPS reduced, our model still maintains a decent accuracy, with only 2.0% mAP(mean average precision) loss, which provides support for real-time application of UAV object detection.
  • 期刊类型引用(7)

    1. Ke SHANG,Weizhen HE,Shuai ZHANG. Review on Security Defense Technology Research in Edge Computing Environment. Chinese Journal of Electronics. 2024(01): 1-18 . 必应学术
    2. 郑嘉诚,何亨,陈月佳,肖天哲. 边缘计算中基于区块链的轻量级密文访问控制方案. 计算机系统应用. 2024(04): 69-81 . 百度学术
    3. 叶文慧,王金花,张文政,周宇,刘妍妍. 移动边缘计算场景下基于身份的安全认证密钥协商协议. 通信技术. 2024(04): 400-408 . 百度学术
    4. 孙剑明,赵梦鑫. 边缘计算下差分隐私的应用研究综述. 计算机科学. 2024(S1): 896-904 . 百度学术
    5. 常敬超,汤红波,游伟. 基于信誉反馈的边缘设备信任评估算法. 信息工程大学学报. 2024(04): 485-491 . 百度学术
    6. 陈珍珠,周纯毅,苏铓,高艳松,付安民. 面向机器学习的安全外包计算研究进展. 计算机研究与发展. 2023(07): 1450-1466 . 本站查看
    7. 何勇,张航宇,郭智鸿,苏桐桐,李虎,王凯乐. 基于区块链的分布式无人机数据安全模型. 计算机测量与控制. 2023(10): 153-159 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  387
  • HTML全文浏览量:  4
  • PDF下载量:  438
  • 被引次数: 28
出版历程
  • 发布日期:  2022-03-31

目录

    /

    返回文章
    返回