• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

边云协同计算中基于预测的资源部署与任务调度优化

苏命峰, 王国军, 李仁发

苏命峰, 王国军, 李仁发. 边云协同计算中基于预测的资源部署与任务调度优化[J]. 计算机研究与发展, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
引用本文: 苏命峰, 王国军, 李仁发. 边云协同计算中基于预测的资源部署与任务调度优化[J]. 计算机研究与发展, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
Citation: Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
苏命峰, 王国军, 李仁发. 边云协同计算中基于预测的资源部署与任务调度优化[J]. 计算机研究与发展, 2021, 58(11): 2558-2570. CSTR: 32373.14.issn1000-1239.2021.20200621
引用本文: 苏命峰, 王国军, 李仁发. 边云协同计算中基于预测的资源部署与任务调度优化[J]. 计算机研究与发展, 2021, 58(11): 2558-2570. CSTR: 32373.14.issn1000-1239.2021.20200621
Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. CSTR: 32373.14.issn1000-1239.2021.20200621
Citation: Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. CSTR: 32373.14.issn1000-1239.2021.20200621

边云协同计算中基于预测的资源部署与任务调度优化

基金项目: 国家自然科学基金重点项目(61632009);湖南省自然科学基金项目(2019JJ70057);广东省自然科学基金项目(2017A030308006);国家重点研发计划项目(2020YFB1005804);中南大学中央高校基本科研业务费专项资金项目(2018zzts180)
详细信息
  • 中图分类号: TP301.6

Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing

Funds: This work was supported by the Key Program of the National Natural Science Foundation of China (61632009), the Natural Science Foundation of Hunan Province (2019JJ70057), the Natural Science Foundation of Guangdong Province (2017A030308006), the National Key Research and Development Program of China (2020YFB1005804), and the Fundamental Research Funds for the Central Universities of Central South University (2018zzts180).
  • 摘要: 数据集中处理的云计算模式提供交互迅速、绿色高效的多样化应用服务面临新挑战.将云计算能力扩展到边缘设备,提出了边云协同计算框架;设计了基于任务预测的资源部署算法,在云服务中心通过二维时间序列对任务进行预测,结合分类聚合、延迟阈值判定等优化边缘服务器任务运行所需资源部署;提出了基于帕累托优化的任务调度算法,在边缘服务器分2个阶段进行帕累托渐进比较得到用户服务质量和系统服务效应2个目标曲线的相切点或任一相交点以优化任务调度.实验结果表明:结合基于任务预测的资源部署算法与基于帕累托优化的任务调度算法在提高平均用户任务命中率基础上,其用户平均服务完成时间、系统整体服务效应度、总任务延迟率在不同用户任务规模、不同Zipf分布参数α的应用场景下,均优于基于帕累托优化的任务调度算法和基于FIFO(first input first output)的基准任务调度算法.
    Abstract: The cloud computing model of data centralized processing is facing new challenges for providing diversified application services with rapid interaction and green efficiency. In this paper, the cloud computing capability is extended to the edge devices, and an edge cloud collaborative computing framework is proposed. A resource deployment algorithm based on task prediction (RDTP) is designed. The tasks are predicted by two-dimensional time series in cloud service center, and the task resource deployment of edge server is optimized by classification aggregation and delay threshold determination. A task scheduling algorithm based on Pareto improvement (TSPI) is proposed. At the edge servers, the Pareto progressive comparison is conducted in two stages to obtain the tangent point or any intersection point of the two objective curves of quality of user service and effect of system service to optimize task scheduling. The experimental results show that combining the resource deployment algorithm based on task prediction and the task scheduling algorithm based on Pareto improvement (RDTP-TSPI) increases the average user task hit rate. In addition, in the application scenarios of varying user task scales and different Zipf distribution parameters α, the average service completion time of users, the overall service effectiveness of system, and the total task delay rate of RDTP-TSPI are better than the TSPI and BA (benchmark task scheduling algorithm based on FIFO).
  • 期刊类型引用(10)

    1. 崔玉礼,黄丽君. 基于图卷积神经网络的WSN零动态攻击检测方法. 太原学院学报(自然科学版). 2025(01): 78-84 . 百度学术
    2. 何戡,陈金喆,宗学军,齐济,孙永超. 基于油气集输半实物仿真平台的工控网络安全测试研究. 化工自动化及仪表. 2024(02): 274-283 . 百度学术
    3. 李卫峰,冯光辉. 基于动态特征选择的恶意网络行为检测仿真. 计算机仿真. 2024(02): 410-414 . 百度学术
    4. 马佳利,郭渊博,方晨,陈庆礼,张琦. 基于数字孪生的工业互联网安全检测与响应研究. 通信学报. 2024(06): 87-100 . 百度学术
    5. 李一鑫. 面向工业网络场景的基于1DLA-CNN和DCNN-IDS算法的网络安全检测模型研究. 自动化与仪器仪表. 2024(07): 138-142 . 百度学术
    6. 过珺. 基于优先级诊断树的工控网络入侵数据关联挖掘方法. 齐齐哈尔大学学报(自然科学版). 2024(04): 11-16 . 百度学术
    7. 王泽鹏 ,马超 ,张壮壮 ,吴黎兵 ,石小川 . 动态决策驱动的工控网络数据要素威胁检测方法. 计算机研究与发展. 2024(10): 2404-2416 . 本站查看
    8. 刘奇旭,陈艳辉,尼杰硕,罗成,柳彩云,曹雅琴,谭儒,冯云,张越. 基于机器学习的工业互联网入侵检测综述. 计算机研究与发展. 2022(05): 994-1014 . 本站查看
    9. 赵明明,司红星,刘潮. 基于数据挖掘与关联分析的工控设备异常运行状态自动化检测方法分析. 信息安全与通信保密. 2022(04): 2-10 . 百度学术
    10. 刘广睿,张伟哲,李欣洁. 基于边缘样本的智能网络入侵检测系统数据污染防御方法. 计算机研究与发展. 2022(10): 2348-2361 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  840
  • HTML全文浏览量:  9
  • PDF下载量:  528
  • 被引次数: 14
出版历程
  • 发布日期:  2021-10-31

目录

    /

    返回文章
    返回