• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

融合上下文信息的篇章级事件时序关系抽取方法

王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗

王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
引用本文: 王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
Citation: Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. DOI: 10.7544/issn1000-1239.2021.20200627
王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627
引用本文: 王俊, 史存会, 张瑾, 俞晓明, 刘悦, 程学旗. 融合上下文信息的篇章级事件时序关系抽取方法[J]. 计算机研究与发展, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627
Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627
Citation: Wang Jun, Shi Cunhui, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. Document-Level Event Temporal Relation Extraction with Context Information[J]. Journal of Computer Research and Development, 2021, 58(11): 2475-2484. CSTR: 32373.14.issn1000-1239.2021.20200627

融合上下文信息的篇章级事件时序关系抽取方法

基金项目: 国家自然科学基金面上项目(91746301,61772498);国家重点研发计划项目(29198220,2017YFC0820404)
详细信息
  • 中图分类号: TP391

Document-Level Event Temporal Relation Extraction with Context Information

Funds: This work was supported by the General Program of the National Natural Science Foundation of China (91746301, 61772498) and the National Key Research and Development Program of China (29198220, 2017YFC0820404).
  • 摘要: 事件时序关系抽取是一项重要的自然语言理解任务,可以广泛应用于诸如知识图谱构建、问答系统等任务.已有事件时序关系抽取方法往往将该任务视为句子级事件对的分类问题,而基于有限的局部句子信息导致其抽取的事件时序关系的精度较低,且无法保证整体时序关系的全局一致性.针对此问题,提出一种融合上下文信息的篇章级事件时序关系抽取方法,使用基于双向长短期记忆(bidirectional long short-term memory, Bi-LSTM)的神经网络模型学习文章中事件对的时序关系表示,再利用自注意力机制融入上下文中其他事件对信息,从而得到更丰富的事件对时序关系表示用于时序关系分类.通过TB-Dense(timebank dense)和MATRES(multi-axis temporal relations for start-points)数据集的实验表明:此方法能够取得比当前主流的句子级方法更佳的抽取效果.
    Abstract: Event temporal relation extraction is an important natural language understanding task, which can be widely used in downstream tasks such as construction of knowledge graph, question answering system and narrative generation. Existing event temporal relation extraction methods often treat the task as a sentence-level event pair classification problem, and solve it by some classification model. However, based on limited local sentence information, the accuracy of the extraction of temporal relations among events is low and the global consistency of the temporal relations cannot be guaranteed. For this problem, this paper proposes a document-level event temporal relation extraction with context information, which uses the neural network model based on Bi-LSTM (bidirectional long short-term memory) to learn the temporal relation expressions of event pairs, and then uses the self-attention mechanism to combine the information of other event pairs in the context, to obtain a better event temporal relation expression for temporal relation classification. At last, that event temporal relation expression with context information will improve the global event temporal relation extraction by enhancing temporal relation classification of all event pairs in the document. Experiments on TB-Dense (timebank dense) dataset and MATRES (multi-axis temporal relations for start-points) dataset show that this method can achieve better results than the latest sentence-level methods.
  • 期刊类型引用(10)

    1. 崔玉礼,黄丽君. 基于图卷积神经网络的WSN零动态攻击检测方法. 太原学院学报(自然科学版). 2025(01): 78-84 . 百度学术
    2. 何戡,陈金喆,宗学军,齐济,孙永超. 基于油气集输半实物仿真平台的工控网络安全测试研究. 化工自动化及仪表. 2024(02): 274-283 . 百度学术
    3. 李卫峰,冯光辉. 基于动态特征选择的恶意网络行为检测仿真. 计算机仿真. 2024(02): 410-414 . 百度学术
    4. 马佳利,郭渊博,方晨,陈庆礼,张琦. 基于数字孪生的工业互联网安全检测与响应研究. 通信学报. 2024(06): 87-100 . 百度学术
    5. 李一鑫. 面向工业网络场景的基于1DLA-CNN和DCNN-IDS算法的网络安全检测模型研究. 自动化与仪器仪表. 2024(07): 138-142 . 百度学术
    6. 过珺. 基于优先级诊断树的工控网络入侵数据关联挖掘方法. 齐齐哈尔大学学报(自然科学版). 2024(04): 11-16 . 百度学术
    7. 王泽鹏 ,马超 ,张壮壮 ,吴黎兵 ,石小川 . 动态决策驱动的工控网络数据要素威胁检测方法. 计算机研究与发展. 2024(10): 2404-2416 . 本站查看
    8. 刘奇旭,陈艳辉,尼杰硕,罗成,柳彩云,曹雅琴,谭儒,冯云,张越. 基于机器学习的工业互联网入侵检测综述. 计算机研究与发展. 2022(05): 994-1014 . 本站查看
    9. 赵明明,司红星,刘潮. 基于数据挖掘与关联分析的工控设备异常运行状态自动化检测方法分析. 信息安全与通信保密. 2022(04): 2-10 . 百度学术
    10. 刘广睿,张伟哲,李欣洁. 基于边缘样本的智能网络入侵检测系统数据污染防御方法. 计算机研究与发展. 2022(10): 2348-2361 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  676
  • HTML全文浏览量:  5
  • PDF下载量:  409
  • 被引次数: 14
出版历程
  • 发布日期:  2021-10-31

目录

    /

    返回文章
    返回