• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于域对抗学习的可泛化虚假人脸检测方法研究

翁泽佳, 陈静静, 姜育刚

翁泽佳, 陈静静, 姜育刚. 基于域对抗学习的可泛化虚假人脸检测方法研究[J]. 计算机研究与发展, 2021, 58(7): 1476-1489. DOI: 10.7544/issn1000-1239.2021.20200803
引用本文: 翁泽佳, 陈静静, 姜育刚. 基于域对抗学习的可泛化虚假人脸检测方法研究[J]. 计算机研究与发展, 2021, 58(7): 1476-1489. DOI: 10.7544/issn1000-1239.2021.20200803
Weng Zejia, Chen Jingjing, Jiang Yugang. On the Generalization of Face Forgery Detection with Domain Adversarial Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1476-1489. DOI: 10.7544/issn1000-1239.2021.20200803
Citation: Weng Zejia, Chen Jingjing, Jiang Yugang. On the Generalization of Face Forgery Detection with Domain Adversarial Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1476-1489. DOI: 10.7544/issn1000-1239.2021.20200803
翁泽佳, 陈静静, 姜育刚. 基于域对抗学习的可泛化虚假人脸检测方法研究[J]. 计算机研究与发展, 2021, 58(7): 1476-1489. CSTR: 32373.14.issn1000-1239.2021.20200803
引用本文: 翁泽佳, 陈静静, 姜育刚. 基于域对抗学习的可泛化虚假人脸检测方法研究[J]. 计算机研究与发展, 2021, 58(7): 1476-1489. CSTR: 32373.14.issn1000-1239.2021.20200803
Weng Zejia, Chen Jingjing, Jiang Yugang. On the Generalization of Face Forgery Detection with Domain Adversarial Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1476-1489. CSTR: 32373.14.issn1000-1239.2021.20200803
Citation: Weng Zejia, Chen Jingjing, Jiang Yugang. On the Generalization of Face Forgery Detection with Domain Adversarial Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1476-1489. CSTR: 32373.14.issn1000-1239.2021.20200803

基于域对抗学习的可泛化虚假人脸检测方法研究

基金项目: 国家自然科学基金项目(62032006)
详细信息
  • 中图分类号: TP391

On the Generalization of Face Forgery Detection with Domain Adversarial Learning

Funds: This work was supported by the National Natural Science Foundation of China (62032006).
  • 摘要: 随着生成式对抗网络(generative adversarial networks, GAN)的快速发展,虚假人脸生成技术取得了显著进展.为了降低以假乱真的人脸生成技术给社会带来的危害,虚假人脸鉴别成为一个非常重要的课题,吸引了国内外研究者的广泛关注.然而,目前虚假人脸鉴别的研究工作相对较少,仍然有许多问题需要被解决.其中如何提升鉴别模型的迁移泛化能力是至关重要的问题,也是虚假人脸检测任务能否实际投入使用的关键所在.如何提升虚假人脸鉴别方法的泛化能力,即做到在没有见过的生成方法产生的数据上仍然准确有效非常重要.对此,提出了基于域对抗学习的可泛化虚假人脸检测模型,通过引入领域对抗分支,弱化特征提取器对于特定生成模型非鲁棒性特征的提取,模型能够抽取鲁棒性更强、泛化能力更高的特征,从而在没有见过的生成方法产生的虚假人脸图片上具有更好的鉴别表现.实验结果表明:所提出的方法能够提升鉴别模型的泛化能力,显著提升虚假人脸鉴别模型在未知生成模型产生的虚假图像上的性能.
    Abstract: With the rapid development of generative adversarial networks (GAN), breakthrough progress has been made in fake face generation. In order to reduce the harmful effects of fake face generation technology to society, fake face identification has become a very important topic, which has attracted numerous research efforts. Although impressive progress has been made in fake face identification, there are still many problems to be solved. Among them, how to improve the generalization ability of the fake face detection model is a crucial issue, and it is also the key to deploy fake face detection techniques in real-world scenarios. This paper studies the fake face identification problem, aiming to improve the generalization ability of the fake face identification model. Motivated by the idea of unsupervised domain adaptation, this paper introduces the domain adversarial branch to weaken the extraction of non-robust features of specific generative models by the feature extractor, so that the model can extract features with stronger robustness and higher generalization ability, improving the identification performance on the fake face images generated by unknown GANs. Experimental results show that the method proposed in this paper can effectively improve the generalization ability of the identification model, and significantly improve the performance of the fake face identification model on the fake images generated by the unknown generation model.
  • 期刊类型引用(18)

    1. 徐宁,李静秋,王岚君,刘安安. 时序特性引导下的谣言事件检测方法评测. 南京大学学报(自然科学). 2025(01): 71-82 . 百度学术
    2. 崔蒙蒙,刘井平,阮彤,宋雨秋,杜渂. 基于双重多视角表示的目标级隐性情感分类. 计算机工程. 2024(01): 79-90 . 百度学术
    3. 张乐怡,周怡洁,俞定国,闫燕勤. 媒介变迁下的谣言传播研究. 新媒体研究. 2024(14): 12-16 . 百度学术
    4. 王世雄,吴泽政. 基于异质信息网络表征学习的微博虚假信息甄别研究. 情报杂志. 2024(12): 152-160 . 百度学术
    5. 陈雄逸,许力,张欣欣,尤玮婧. 社交网络基于意见领袖的谣言抑制方案. 信息安全研究. 2023(01): 57-65 . 百度学术
    6. 张欣欣 ,许力 ,徐振宇 . 基于网络模体的移动社会网络信息可控传播方法. 电子与信息学报. 2023(02): 635-643 . 百度学术
    7. 杨晓晖,王卫宾. 基于门控图神经网络的谣言检测模型. 燕山大学学报. 2023(01): 73-81 . 百度学术
    8. 孙书魁,范菁,李占稳,曲金帅,路佩东. 人工智能在新型冠状病毒肺炎中的研究综述. 计算机工程与应用. 2023(05): 28-39 . 百度学术
    9. 陈卓敏,王莉,朱小飞,王子康. 基于对抗图增强对比学习的虚假新闻检测. 中文信息学报. 2023(06): 137-146 . 百度学术
    10. 鲁贻锦,吴蕾. 基于大数据驱动技术的媒体风险感知模型研究. 佳木斯大学学报(自然科学版). 2023(06): 52-56 . 百度学术
    11. 许云红,崔乐靖,朱南丽,郑娜娜. 社交媒体用户谣言传播行为的影响因素研究综述. 新媒体研究. 2023(24): 14-17+33 . 百度学术
    12. 龙小农,靳旭鹏. 新冠疫情、信息疫情与政治疫情的互动关系及作用机制. 现代传播(中国传媒大学学报). 2022(02): 66-76 . 百度学术
    13. 杨秀璋,刘建义,任天舒,宋籍文,武帅,姜婧怡,陈登建,周既松,李娜. 基于改进LDA-CNN-BiLSTM模型的社交媒体情感分析研究. 现代计算机. 2022(02): 29-36 . 百度学术
    14. 张放,范琳琅. 公共危机中社交媒体辟谣信息采纳的关键要素探究——基于新冠疫情微博辟谣文本的计算分析. 新闻界. 2022(10): 75-85 . 百度学术
    15. 朱梦蝶,付少雄,郑德俊,李杨. 文献视角下的社交媒体健康谣言研究:特征、传播与治理. 图书情报知识. 2022(05): 131-143 . 百度学术
    16. 肖喜珠,杨闻远,高慧敏,高世奇,郭书恒,路思玲,聂欣政,任书漫,王一民,温馨. “后真相”时代的风险感知与反击:青年社交媒体用户信息行为研究. 新媒体研究. 2022(21): 40-46 . 百度学术
    17. 徐建民,王恺霖,吴树芳. 基于改进D-S证据理论的微博不可信用户识别研究. 数据分析与知识发现. 2022(12): 99-112 . 百度学术
    18. 周晖. 国内外基于社交媒体的社会情绪对比分析. 中华医学图书情报杂志. 2022(12): 65-69 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  683
  • HTML全文浏览量:  10
  • PDF下载量:  341
  • 被引次数: 39
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回