Research on Spreading Mechanism of False Information in Social Networks by Motif Degree
-
摘要: 社交媒体作为信息传播的载体,既可使人们快捷地分享信息流和获取时事新闻,也可能成为虚假信息泛滥蔓延的重要渠道.现有的虚假信息检测研究多基于对微博内容的机器学习或深度学习的识别模型,忽略了真假信息传播网络的结构差异.基于复杂网络的模体理论,提出了广度模体度与深度模体度的概念来量化传播网络的结构重要指标.研究表明:基于模体度的重要性计算方法是对传统网络结构重要性指标的一种创新与拓展,能够更全面地测度传播网络结构特性.通过构建的二维模体度量化指标,分析和揭示了微博、Twitter网络中虚假信息的结构特性与传播机制:虚假信息在广度传播与深度传播共同作用下扩散,广度模体度主要作用于网络传播规模,而深度模体度影响网络结构的复杂性.基于模体度的网络特征分析,可以应用于社交媒体信息传播的早期从源头上检测虚假信息,为虚假信息检测提供了一种新颖可行的途径.Abstract: In online social networks, massive amounts of information are transmitted and diffused through users’ interaction and reposting behavior. As the carrier of information diffusion, social media can not only make people share information flow and get current affairs news quickly, but also facilitate the exchange of ideas and information between people. At the same time, it may become an important channel for the spread of false information. Most of the existing researches on false information detection are based on the recognition models of machine learning and deep learning of Weibo content, while ignoring the structural differences between true and false information networks. Therefore, based on the motif theory of complex networks, this paper puts forward the concepts of breadth and depth motif degree to quantify the structural importance of the network. The research shows that the importance calculation method based on motif degree is an innovation and expansion of traditional network structure importance index, which can measure the specificity of communication network structure more comprehensively. This paper analyzes and reveals the structure characteristics and propagation mechanism of false information in microblog network by constructing the two-dimensional motif measurement index, that is, the false information is diffused under the joint action of breadth and depth propagation, and the breadth motif mainly affects the network spread scale, while the depth motif degree affects the complexity of the network structure. Even in the early stage of information diffusion, the false news detection method based on motif features has a high prediction accuracy. The network feature analysis based on motif degree can be applied to detect false information from the source in the early stage of social media information diffusion, which provides a novel and feasible way for false information detection.
-
-
期刊类型引用(9)
1. 王吉宏,赵书庆,罗敏楠,刘欢,赵翔,郑庆华. 基于信息瓶颈理论的鲁棒少标签虚假信息检测. 计算机研究与发展. 2024(07): 1629-1642 . 本站查看
2. Wanqiu CUI,Dawei WANG,Na HAN. Survey on Fake Information Generation, Dissemination and Detection. Chinese Journal of Electronics. 2024(03): 573-583 . 必应学术
3. 孟文凡,周丽华,王晓旭. 融合评论序列二义性与生成用户隐私特征的谣言检测. 计算机应用. 2024(08): 2342-2350 . 百度学术
4. 吴树芳,尹凯,吴汭漩,朱杰. 融入隐式情感和主题增强分布的网络敏感信息深度识别研究. 情报科学. 2024(05): 111-119 . 百度学术
5. 于运铎,徐铭达,许小可. 基于多尺度时效模体度的虚假信息传播机制. 电子科技大学学报. 2023(01): 154-160 . 百度学术
6. 吴小坤,李婉旖. 风险与技术双向驱动的互联网社会治理:核心议题与前沿趋势. 东岳论丛. 2023(04): 75-83 . 百度学术
7. 钟智锦,周金金,徐铭达,缪旭,许小可. 娱乐信息与公共信息的扩散竞争:网络结构和传播主体视角. 新闻与传播研究. 2023(03): 88-107+128 . 百度学术
8. 周小红. 基于微分方程的随机网络舆论传播模型研究与分析. 贵州大学学报(自然科学版). 2022(03): 27-32 . 百度学术
9. 李攀攀,谢正霞,王赠凯,靳锐. 一种基于信息DNA的互联网信息内容传播及演化追溯方法. 电信科学. 2022(11): 36-46 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 758
- HTML全文浏览量: 8
- PDF下载量: 400
- 被引次数: 24