Information Propagation Prediction and Specific Information Suppression in Social Networks
-
摘要: 近年来,随着Twitter、Facebook、新浪微博等社交网站用户数量的激增,信息数量急剧膨胀,隐藏在海量信息中的不实信息的传播带来了不良的影响,如何调控或抑制特定信息的传播是网络信息管理面临的一项技术挑战.为了解决这一问题,首先从真实微博网络出发,基于机器学习方法提出了不依赖于传播模型的独立信息转发预测机制,从而对信息的传播进行预测;其次,基于独立级联模型,综合考虑本文场景的特殊性,提出了异步信息不平等竞争传播模型作为特定信息与免疫信息的竞争传播机制;最后,提出了3个种子节点集合选择算法,通过向选择的种子节点注入免疫信息使得免疫信息在网络中广泛传播从而抑制特定信息的传播.基于真实社交网站数据的实验证明,提出的信息传播预测模型以及种子节点选取算法对特定信息传播的调控和抑制具有良好的效果.Abstract: In recent years, with the increasing number of users in social networks such as Twitter, Facebook and Sina Weibo, the amount of information has rapidly expanded. The spread of untrue information hidden in massive information has brought adverse effects. How to regulate or suppress the spread of specific information is a technical challenge faced by network information management. In order to solve this problem, first of all, the independent information forwarding prediction mechanism based on machine learning method, which does not depend on the propagation model is proposed, so as to predict the information propagation. Secondly, based on the independent cascade model, considering the particularity of the scenario in this paper, the asynchronous information unequal competition propagation model is proposed as the competitive propagation mechanism of specific information and immune information. Finally, three selection algorithms of seed nodes are proposed and the immune information is widely spread in the network by injecting immune information into the seed nodes, so as to suppress the spread of specific information. Experiments based on real social network data show that the information propagation prediction model and the selection algorithms of seed nodes proposed have good effects on the regulation and suppression of specific information propagation.
-
-
期刊类型引用(10)
1. 杜金明,孙媛媛,林鸿飞,杨亮. 融入知识图谱和课程学习的对话情绪识别. 计算机研究与发展. 2024(05): 1299-1309 . 本站查看
2. 纪鑫,武同心,王宏刚,杨智伟,何禹德,赵晓龙. 基于多通道图神经网络的属性聚合式实体对齐. 北京航空航天大学学报. 2024(09): 2791-2799 . 百度学术
3. 陈富强,寇嘉敏,苏利敏,李克. 基于图神经网络的多信息优化实体对齐模型. 计算机科学. 2023(03): 34-41 . 百度学术
4. 刘璐,飞龙,高光来. 基于多视图知识表示和神经网络的旅游领域实体对齐方法. 计算机应用研究. 2023(04): 1044-1051 . 百度学术
5. 安靖,司光亚,周杰,韩旭. 基于知识图谱的仿真想定智能生成方法. 指挥与控制学报. 2023(01): 103-109 . 百度学术
6. 孙泽群,崔员宁,胡伟. 基于链接实体回放的多源知识图谱终身表示学习. 软件学报. 2023(10): 4501-4517 . 百度学术
7. 时慧芳. 融合高速路门机制的跨语言实体对齐研究. 现代电子技术. 2023(20): 167-172 . 百度学术
8. 张富,杨琳艳,李健伟,程经纬. 实体对齐研究综述. 计算机学报. 2022(06): 1195-1225 . 百度学术
9. 姜亚莉,戴齐,刘捷. 基于交叉图匹配和双向自适应迭代的实体对齐. 信息与电脑(理论版). 2022(20): 201-204 . 百度学术
10. 王小鹏. 基于知识图谱的择优分段迭代式实体对齐方法研究. 信息与电脑(理论版). 2021(18): 48-52 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 602
- HTML全文浏览量: 7
- PDF下载量: 471
- 被引次数: 25