• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于主题与情感联合预训练的虚假评论检测方法

张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶

张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
引用本文: 张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
Citation: Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817
引用本文: 张东杰, 黄龙涛, 张荣, 薛晖, 林俊宇, 路瑶. 基于主题与情感联合预训练的虚假评论检测方法[J]. 计算机研究与发展, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817
Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817
Citation: Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. CSTR: 32373.14.issn1000-1239.2021.20200817

基于主题与情感联合预训练的虚假评论检测方法

基金项目: 廊坊市科技支撑计划项目(2020011005)
详细信息
  • 中图分类号: TP399

Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model

Funds: This work was supported by the Key Technology Research and Development Program of Langfang (2020011005).
  • 摘要: 商品评论信息是用户线上决策的重要依据,但在利益的驱使下商家往往会通过雇佣专业的写手撰写大量虚假评论的方式来误导用户,进而达到包装自己或诋毁竞争对手的目的.这种现象会造成不正当的商业竞争和极差的用户体验.针对这一现象,我们通过情感预训练的方法对现有的虚假评论识别模型进行了改进,并提出了一种能够同时整合评论语义和情感信息的联合预训练学习方法.鉴于预训练模型强大的语义表示能力, 在联合学习框架中采用了2种预训练模型编码器分别用于抽取评论的语义和情感上下文特征,并通过联合训练的方法整合2种特征,最后使用Center Loss损失函数对模型进行优化.在多个公开数据集和多个不同任务上进行了验证实验,实验表明提出的联合模型在虚假评论检测与情感极性分析任务上都取得了目前最好的效果且具有更强的泛化能力.
    Abstract: Product review information is an important basis for users’ online decision-making. However, driven by profit, businesses often hire professional writers to write a large number of fake reviews to mislead users and achieve the purpose of packaging themselves and denigrating competitors, resulting in unfair business competition and extremely poor user experience. In response to this phenomenon, we improved the existing spam review recognition methods through Pre-training Models, and proposed a joint pre-training learning method that can simultaneously integrate the semantic and sentimental information of product reviews. In view of the powerful semantic representation capabilities of the pre-trained model, we apply two pre-trained encoders to extract the semantic and emotional features of reviews in the joint learning framework. We integrate the two types of features through joint pre-training learning method. Apart from that, we add the Center Loss function to optimize the model. We have conducted several verification experiments on multiple public data sets and multiple different tasks. The experiments show that our proposed joint model has achieved the best results and has a stronger generalization in both fake review detection and sentiment analysis tasks.
  • 期刊类型引用(14)

    1. 胡磊,甘胜丰. 基于YOLO-CIRCLE算法的圆形钢卷检测. 湖北第二师范学院学报. 2023(02): 18-25 . 百度学术
    2. 张晓辉,何金海,兰鹏燕,徐圣斯. 局部几何与全局结构联合感知的三维形状分类方法. 计算机应用研究. 2023(12): 3828-3833 . 百度学术
    3. 张晓媛,于洋,王新蕊. 三维图像虚拟视点生成优化研究仿真. 计算机仿真. 2022(03): 205-209 . 百度学术
    4. 张艳丽,牛任恺,张鑫磊,孙志杰,王利赛. 基于序列标注的业务异常工单判别方法研究. 电子设计工程. 2022(07): 139-143 . 百度学术
    5. 吴康楠,姜洪庆. 面向绿色化改造的历史民居建筑三维重构方法. 工业加热. 2022(05): 27-30+40 . 百度学术
    6. 连远锋,裴守爽,胡伟. 融合NFFD与图卷积的单视图三维物体重建. 光学精密工程. 2022(10): 1189-1202 . 百度学术
    7. 李远松,丁津津,徐晨,高博,汤汉松,单荣荣. 基于智能感知与深度学习的智能变电站设备状态检测方法. 电气工程学报. 2022(02): 208-214 . 百度学术
    8. 郭艺辉,陆寄远,黄承慧,钟雪灵,林淑金,苏卓,罗笑南. 基于混合频谱信号编码的网格纹理平滑. 计算机学报. 2021(02): 318-333 . 百度学术
    9. 谢昊洋,钟跃崎. 基于图卷积网络的非参数化三维人体重建. 毛纺科技. 2021(04): 18-24 . 百度学术
    10. 李海生,武玉娟,郑艳萍,吴晓群,蔡强,杜军平. 基于深度学习的三维数据分析理解方法研究综述. 计算机学报. 2020(01): 41-63 . 百度学术
    11. 曲海成,田小容,刘腊梅,石翠萍. 多尺度显著区域检测图像压缩. 中国图象图形学报. 2020(01): 31-42 . 百度学术
    12. 杨晓文,尹洪红,韩燮,刘佳鸣. 基于蚁狮优化的极限学习机的网格分割方法. 激光与光电子学进展. 2020(04): 163-169 . 百度学术
    13. 崔金栋,陈思远. 融媒体信息推荐模型构建与信息推荐方法研究. 情报科学. 2020(07): 52-58 . 百度学术
    14. 周燕,曾凡智,吴臣,罗粤,刘紫琴. 基于深度学习的三维形状特征提取方法. 计算机科学. 2019(09): 47-58 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  690
  • HTML全文浏览量:  4
  • PDF下载量:  464
  • 被引次数: 34
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回