• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

网络信息生态系统中的虚假信息:检测、缓解与挑战

Amrita Bhattacharjee, 舒凯, 高旻, 刘欢

Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
引用本文: Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Citation: Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. DOI: 10.7544/issn1000-1239.2021.20200979
Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
引用本文: Amrita Bhattacharjee, 舒凯, 高旻, 刘欢. 网络信息生态系统中的虚假信息:检测、缓解与挑战[J]. 计算机研究与发展, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979
Citation: Amrita Bhattacharjee, Shu Kai, Gao Min, Liu Huan. Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges[J]. Journal of Computer Research and Development, 2021, 58(7): 1353-1365. CSTR: 32373.14.issn1000-1239.2021.20200979

网络信息生态系统中的虚假信息:检测、缓解与挑战

详细信息
  • 中图分类号: TP391

Disinformation in the Online Information Ecosystem: Detection, Mitigation and Challenges

  • 摘要: 随着互联网的迅速发展及网络社会媒体中用户的增加,通过社会媒体发布和传播信息的真实性和质量受到日益广泛的关注.目前大部分公众已习惯从社会媒体平台与互联网获取新闻,甚至是获取受到高度关注的话题(如新冠病毒感染症状)的信息.鉴于网络信息生态系统非常嘈杂,充斥着错误和虚假信息并经常受到恶意媒介的污染,从中识别真实的信息成为一项艰巨任务.对此,研究者们已开始致力于虚假信息检测和减缓虚假信息传播影响方面的工作.讨论了网络信息生态系统中的虚假信息问题,特别是随着新冠病毒大爆发而来的“信息疫情”.随后,简述了虚假信息检测方法,分析了减缓虚假信息影响的方法,并探讨了虚假信息研究中的固有挑战.最后从跨学科角度阐述了检测和减缓虚假信息影响的方法和未来研究展望.
    Abstract: With the rapid increase in access to the internet and the subsequent growth in the population of social media users, the quality of information posted, disseminated, and consumed via these platforms is an issue of growing concern. A large fraction of the common public turn to social media platforms and, in general, the internet for news and even information regarding highly concerning issues such as COVID-19 symptoms and treatments. Given that the online information ecosystem is extremely noisy, fraught with misinformation and disinformation, and often contaminated by malicious agents spreading propaganda, identifying genuine and good quality information from disinformation is a challenging task for humans. In this regard, there is a significant amount of ongoing research in the directions of disinformation detection and mitigation. In this survey, we discuss the online disinformation problem, focusing on the recent ″infodemic″ in the wake of the coronavirus pandemic. We then proceed to discuss the inherent challenges in disinformation research, including data collection, early detection and effective mitigation, fact-checking based approaches, multi-modality approaches, and policy issues and fairness, and elaborate on the interdisciplinary approaches towards the detection and mitigation of disinformation, after a short overview of the various directions explored in computational detection and mitigation efforts.
  • 期刊类型引用(14)

    1. 胡磊,甘胜丰. 基于YOLO-CIRCLE算法的圆形钢卷检测. 湖北第二师范学院学报. 2023(02): 18-25 . 百度学术
    2. 张晓辉,何金海,兰鹏燕,徐圣斯. 局部几何与全局结构联合感知的三维形状分类方法. 计算机应用研究. 2023(12): 3828-3833 . 百度学术
    3. 张晓媛,于洋,王新蕊. 三维图像虚拟视点生成优化研究仿真. 计算机仿真. 2022(03): 205-209 . 百度学术
    4. 张艳丽,牛任恺,张鑫磊,孙志杰,王利赛. 基于序列标注的业务异常工单判别方法研究. 电子设计工程. 2022(07): 139-143 . 百度学术
    5. 吴康楠,姜洪庆. 面向绿色化改造的历史民居建筑三维重构方法. 工业加热. 2022(05): 27-30+40 . 百度学术
    6. 连远锋,裴守爽,胡伟. 融合NFFD与图卷积的单视图三维物体重建. 光学精密工程. 2022(10): 1189-1202 . 百度学术
    7. 李远松,丁津津,徐晨,高博,汤汉松,单荣荣. 基于智能感知与深度学习的智能变电站设备状态检测方法. 电气工程学报. 2022(02): 208-214 . 百度学术
    8. 郭艺辉,陆寄远,黄承慧,钟雪灵,林淑金,苏卓,罗笑南. 基于混合频谱信号编码的网格纹理平滑. 计算机学报. 2021(02): 318-333 . 百度学术
    9. 谢昊洋,钟跃崎. 基于图卷积网络的非参数化三维人体重建. 毛纺科技. 2021(04): 18-24 . 百度学术
    10. 李海生,武玉娟,郑艳萍,吴晓群,蔡强,杜军平. 基于深度学习的三维数据分析理解方法研究综述. 计算机学报. 2020(01): 41-63 . 百度学术
    11. 曲海成,田小容,刘腊梅,石翠萍. 多尺度显著区域检测图像压缩. 中国图象图形学报. 2020(01): 31-42 . 百度学术
    12. 杨晓文,尹洪红,韩燮,刘佳鸣. 基于蚁狮优化的极限学习机的网格分割方法. 激光与光电子学进展. 2020(04): 163-169 . 百度学术
    13. 崔金栋,陈思远. 融媒体信息推荐模型构建与信息推荐方法研究. 情报科学. 2020(07): 52-58 . 百度学术
    14. 周燕,曾凡智,吴臣,罗粤,刘紫琴. 基于深度学习的三维形状特征提取方法. 计算机科学. 2019(09): 47-58 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  1171
  • HTML全文浏览量:  14
  • PDF下载量:  834
  • 被引次数: 34
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回