• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于单“音频像素”扰动的说话人识别隐蔽攻击

沈轶杰, 李良澄, 刘子威, 刘天天, 罗浩, 沈汀, 林峰, 任奎

沈轶杰, 李良澄, 刘子威, 刘天天, 罗浩, 沈汀, 林峰, 任奎. 基于单“音频像素”扰动的说话人识别隐蔽攻击[J]. 计算机研究与发展, 2021, 58(11): 2350-2363. DOI: 10.7544/issn1000-1239.2021.20210632
引用本文: 沈轶杰, 李良澄, 刘子威, 刘天天, 罗浩, 沈汀, 林峰, 任奎. 基于单“音频像素”扰动的说话人识别隐蔽攻击[J]. 计算机研究与发展, 2021, 58(11): 2350-2363. DOI: 10.7544/issn1000-1239.2021.20210632
Shen Yijie, Li Liangcheng, Liu Ziwei, Liu Tiantian, Luo Hao, Shen Ting, Lin Feng, Ren Kui. Stealthy Attack Towards Speaker Recognition Based on One-“Audio Pixel” Perturbation[J]. Journal of Computer Research and Development, 2021, 58(11): 2350-2363. DOI: 10.7544/issn1000-1239.2021.20210632
Citation: Shen Yijie, Li Liangcheng, Liu Ziwei, Liu Tiantian, Luo Hao, Shen Ting, Lin Feng, Ren Kui. Stealthy Attack Towards Speaker Recognition Based on One-“Audio Pixel” Perturbation[J]. Journal of Computer Research and Development, 2021, 58(11): 2350-2363. DOI: 10.7544/issn1000-1239.2021.20210632
沈轶杰, 李良澄, 刘子威, 刘天天, 罗浩, 沈汀, 林峰, 任奎. 基于单“音频像素”扰动的说话人识别隐蔽攻击[J]. 计算机研究与发展, 2021, 58(11): 2350-2363. CSTR: 32373.14.issn1000-1239.2021.20210632
引用本文: 沈轶杰, 李良澄, 刘子威, 刘天天, 罗浩, 沈汀, 林峰, 任奎. 基于单“音频像素”扰动的说话人识别隐蔽攻击[J]. 计算机研究与发展, 2021, 58(11): 2350-2363. CSTR: 32373.14.issn1000-1239.2021.20210632
Shen Yijie, Li Liangcheng, Liu Ziwei, Liu Tiantian, Luo Hao, Shen Ting, Lin Feng, Ren Kui. Stealthy Attack Towards Speaker Recognition Based on One-“Audio Pixel” Perturbation[J]. Journal of Computer Research and Development, 2021, 58(11): 2350-2363. CSTR: 32373.14.issn1000-1239.2021.20210632
Citation: Shen Yijie, Li Liangcheng, Liu Ziwei, Liu Tiantian, Luo Hao, Shen Ting, Lin Feng, Ren Kui. Stealthy Attack Towards Speaker Recognition Based on One-“Audio Pixel” Perturbation[J]. Journal of Computer Research and Development, 2021, 58(11): 2350-2363. CSTR: 32373.14.issn1000-1239.2021.20210632

基于单“音频像素”扰动的说话人识别隐蔽攻击

基金项目: 国家重点研发计划项目(2020AAA0107700);国家自然科学基金项目(62032021,61772236,61972348);浙江省重点研发计划项目(2019C03133);浙江省引进培育领军型创新创业团队项目(2018R01005);阿里巴巴-浙江大学前沿技术联合研究中心项目;网络空间国际治理研究基地项目
详细信息
  • 中图分类号: TP309

Stealthy Attack Towards Speaker Recognition Based on One-“Audio Pixel” Perturbation

Funds: This work was supported by the National Key Research and Development Program of China (2020AAA0107700), the National Natural Science Foundation of China(62032021, 61772236, 61972348), Zhejiang Key Research and Development Plan (2019C03133), the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2018R01005), the Fund of Alibaba-Zhejiang University Joint Institute of Frontier Technologies, and the Fund of Research Institute of Cyberspace Governance in Zhejiang University.
  • 摘要: 目前针对说话人识别的攻击需要对音频注入长时间的扰动,因此容易被机器或者管理人员发现.提出了一种新颖的基于单“音频像素”扰动的针对说话人识别的隐蔽攻击.该攻击利用了差分进化算法不依赖于模型的黑盒特性和不依赖梯度信息的搜索模式,克服了已有攻击中扰动时长无法被约束的问题,实现了使用单“音频像素”扰动的有效攻击.特别地,设计了一种基于音频段-音频点-扰动值多元组的候选点构造模式,针对音频数据的时序特性,解决了在攻击方案中差分进化算法的候选点难以被描述的问题.攻击在LibriSpeech数据集上针对60个人的实验表明这一攻击能达到100%的成功率.还开展了大量的实验探究不同条件(如性别、数据集、说话人识别方法等)对于隐蔽攻击性能的影响.上述实验的结果为进行有效地攻击提供了指导.同时,提出了分别基于去噪器、重建算法和语音压缩的防御思路.
    Abstract: Attacks towards the speaker recognition system need to inject a long-time perturbation, so it is easy to be detected by machines or administrators. We propose a novel attack towards the speaker recognition based on one-“audio pixel”. Such attack uses the black-box characteristics and search mode of the differential evolution algorithm that does not rely on the model and the gradient information. It overcomes the problem in previous works that the disturbance duration cannot be constrained. Thus, our attack effectively spoofs the speaker recognition via one-“audio pixel” perturbation. In particular, we design a candidate point construction model based on the audio-point-disturbance tuple targeting time series of audio data. It solves the problem that candidate points of differential evolution algorithm are difficult to be described against our attack. The success rate of our attack achieves 100% targeting 60 people in LibriSpeech dataset. In addition, we also conduct abundant experiments to explore the impact of different conditions (e.g., gender, dataset and speaker recognition method) on the performance of our stealthy attack. The result of above experiments provides guidance for effective attacks. At the same time, we put forward ideas based on denoising, reconstruction algorithm and speech compression to defend against our stealthy attack, respectively.
  • 期刊类型引用(10)

    1. 崔玉礼,黄丽君. 基于图卷积神经网络的WSN零动态攻击检测方法. 太原学院学报(自然科学版). 2025(01): 78-84 . 百度学术
    2. 何戡,陈金喆,宗学军,齐济,孙永超. 基于油气集输半实物仿真平台的工控网络安全测试研究. 化工自动化及仪表. 2024(02): 274-283 . 百度学术
    3. 李卫峰,冯光辉. 基于动态特征选择的恶意网络行为检测仿真. 计算机仿真. 2024(02): 410-414 . 百度学术
    4. 马佳利,郭渊博,方晨,陈庆礼,张琦. 基于数字孪生的工业互联网安全检测与响应研究. 通信学报. 2024(06): 87-100 . 百度学术
    5. 李一鑫. 面向工业网络场景的基于1DLA-CNN和DCNN-IDS算法的网络安全检测模型研究. 自动化与仪器仪表. 2024(07): 138-142 . 百度学术
    6. 过珺. 基于优先级诊断树的工控网络入侵数据关联挖掘方法. 齐齐哈尔大学学报(自然科学版). 2024(04): 11-16 . 百度学术
    7. 王泽鹏 ,马超 ,张壮壮 ,吴黎兵 ,石小川 . 动态决策驱动的工控网络数据要素威胁检测方法. 计算机研究与发展. 2024(10): 2404-2416 . 本站查看
    8. 刘奇旭,陈艳辉,尼杰硕,罗成,柳彩云,曹雅琴,谭儒,冯云,张越. 基于机器学习的工业互联网入侵检测综述. 计算机研究与发展. 2022(05): 994-1014 . 本站查看
    9. 赵明明,司红星,刘潮. 基于数据挖掘与关联分析的工控设备异常运行状态自动化检测方法分析. 信息安全与通信保密. 2022(04): 2-10 . 百度学术
    10. 刘广睿,张伟哲,李欣洁. 基于边缘样本的智能网络入侵检测系统数据污染防御方法. 计算机研究与发展. 2022(10): 2348-2361 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 14
出版历程
  • 发布日期:  2021-10-31

目录

    /

    返回文章
    返回