• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于自选尾数压缩的高能效浮点忆阻存内处理系统

丁文隆, 汪承宁, 童薇

丁文隆, 汪承宁, 童薇. 基于自选尾数压缩的高能效浮点忆阻存内处理系统[J]. 计算机研究与发展, 2022, 59(3): 533-552. DOI: 10.7544/issn1000-1239.20210580
引用本文: 丁文隆, 汪承宁, 童薇. 基于自选尾数压缩的高能效浮点忆阻存内处理系统[J]. 计算机研究与发展, 2022, 59(3): 533-552. DOI: 10.7544/issn1000-1239.20210580
Ding Wenlong, Wang Chengning, Tong Wei. Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction[J]. Journal of Computer Research and Development, 2022, 59(3): 533-552. DOI: 10.7544/issn1000-1239.20210580
Citation: Ding Wenlong, Wang Chengning, Tong Wei. Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction[J]. Journal of Computer Research and Development, 2022, 59(3): 533-552. DOI: 10.7544/issn1000-1239.20210580
丁文隆, 汪承宁, 童薇. 基于自选尾数压缩的高能效浮点忆阻存内处理系统[J]. 计算机研究与发展, 2022, 59(3): 533-552. CSTR: 32373.14.issn1000-1239.20210580
引用本文: 丁文隆, 汪承宁, 童薇. 基于自选尾数压缩的高能效浮点忆阻存内处理系统[J]. 计算机研究与发展, 2022, 59(3): 533-552. CSTR: 32373.14.issn1000-1239.20210580
Ding Wenlong, Wang Chengning, Tong Wei. Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction[J]. Journal of Computer Research and Development, 2022, 59(3): 533-552. CSTR: 32373.14.issn1000-1239.20210580
Citation: Ding Wenlong, Wang Chengning, Tong Wei. Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction[J]. Journal of Computer Research and Development, 2022, 59(3): 533-552. CSTR: 32373.14.issn1000-1239.20210580

基于自选尾数压缩的高能效浮点忆阻存内处理系统

基金项目: 国家自然科学基金项目(61832007,61821003);中央高校基本科研业务费专项资金项目(2019kfyXMBZ037);之江实验室开放课题(2020AA3AB07)
详细信息
  • 中图分类号: TP391

Energy-Efficient Floating-Point Memristive In-Memory Processing System Based on Self-Selective Mantissa Compaction

Funds: This work was supported by the National Natural Science Foundation of China (61832007, 61821003), the Fundamental Research Funds for the Central Universities (2019kfyXMBZ037), and the Zhejiang Lab Open Fund (2020AA3AB07).
  • 摘要: 矩阵向量乘法(matrix-vector multiplication, MVM)运算是高性能科学线性系统求解的重要计算内核.Feinberg等人最近的工作提出了将高精度浮点数部署在忆阻阵列上的方法,显示出其在加速科学MVM运算方面的巨大潜力.由于科学计算不同类型的应用对于求解精度的要求各不相同,为具体应用提供合适的计算方式是进一步降低系统能耗的有效途径.展示了一种拥有尾数压缩与对齐位优化策略的系统,在实现高精度浮点数忆阻MVM运算这一基本功能的前提下,能够根据具体应用的求解精度要求选择合适的浮点数尾数压缩位数.通过忽略浮点数尾数权重较小的部分低位与冗余的对齐位的阵列激活,减小运算时阵列及外围电路的能耗.评估结果表明:当忆阻器求解相对于软件基线平均分别有0~10\+\{-3\}数量级的求解残差时,平均运算阵列能耗与模数转换器能耗相对于已有的优化前的系统分别减少了5%~65%与30%~55%.
    Abstract: Matrix-vector multiplication (MVM) is a key computing kernel for solving high-performance scientific systems. Recent work by Feinberg et al has proposed a method of deploying high-precision operands on memristive crossbars, showing its great potential on accelerating scientific MVM. Since different types of scientific computing applications have different precision requirements, providing appropriate computation methods for specific applications is an effective way to further reduce energy consumption. This paper proposes a system with mantissa compaction and alignment optimization strategies. Under the premise of implementing the basic function of high-precision floating-point memristive MVM, the proposed system is also possible to properly select the compaction bits of the floating-point mantissa according to application precision requirements. By neglecting the activation of the low-bit crossbars with less mantissa significance and the redundant alignment crossbars when performing computation, the energy consumption of computational crossbars and peripheral circuits are significantly reduced. The evaluation result shows that when the crossbar-based in-memory solutions of sparse linear systems have average solving residual of 0~10\+\{-3\} order of magnitude compared with the software baseline, the average energy consumption of computational crossbars and peripheral analog-to-digital converters are reduced by 5%~65% and 30%~55% compared with the existing work without optimization, respectively.
  • 期刊类型引用(3)

    1. 张令,马梦丹. 基于时间序列分析法的地震智能预警系统. 微型电脑应用. 2025(02): 206-209 . 百度学术
    2. 张付林,汪可可,张华,毛照平. 城市轨道交通应急演练决策模型可靠性分析. 计算机仿真. 2025(04): 198-201+385 . 百度学术
    3. 张嘉慧,陈智明,黄科,王晓琪,李子龙. 基于数据流聚类的多任务并行数据控制方法. 信息技术. 2024(03): 128-133 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  311
  • HTML全文浏览量:  6
  • PDF下载量:  155
  • 被引次数: 10
出版历程
  • 发布日期:  2022-02-28

目录

    /

    返回文章
    返回