Processing math: 46%
  • 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

边缘智能研究进展

张晓东, 张朝昆, 赵继军

张晓东, 张朝昆, 赵继军. 边缘智能研究进展[J]. 计算机研究与发展, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
引用本文: 张晓东, 张朝昆, 赵继军. 边缘智能研究进展[J]. 计算机研究与发展, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
Citation: Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
张晓东, 张朝昆, 赵继军. 边缘智能研究进展[J]. 计算机研究与发展, 2023, 60(12): 2749-2769. CSTR: 32373.14.issn1000-1239.202220192
引用本文: 张晓东, 张朝昆, 赵继军. 边缘智能研究进展[J]. 计算机研究与发展, 2023, 60(12): 2749-2769. CSTR: 32373.14.issn1000-1239.202220192
Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. CSTR: 32373.14.issn1000-1239.202220192
Citation: Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. CSTR: 32373.14.issn1000-1239.202220192

边缘智能研究进展

基金项目: 国家重点研发计划项目(2019YFB2102400);河北省高层次人才资助项目(B202003027);天津市研究生科研创新项目(2021YJSO2S04)
详细信息
    作者简介:

    张晓东: 1998年生. 硕士研究生. 主要研究方向为边缘计算、车联网

    张朝昆: 1981年生. 博士,副教授,硕士生导师. CCF高级会员. 主要研究方向为下一代互联网、边缘计算、物联网

    赵继军: 1970年生. 博士,教授,博士生导师. CCF高级会员. 主要研究方向为宽带通信网、物联网

    通讯作者:

    张朝昆(zhangchaokun@tju.edu.cn

  • 中图分类号: TP393

State-of-the-Art Survey on Edge Intelligence

Funds: This work was supported by the National Key Research and Development Program of China (2019YFB2102400), the Hebei Provincial High-Level Talent Funding Project (B202003027), and the Tianjin Research Innovation Project for Postgraduate Students (2021YJSO2S04).
More Information
    Author Bio:

    Zhang Xiaodong: born in 1998. Master candidate. Her main research interests include edge computing and Internet of vehicles

    Zhang Chaokun: born in 1981. PhD, associate professor, master supervisor. Senior member of CCF. His main research interests include next generation Internet, edge computing, and Internet of things

    Zhao Jijun: born in 1970. PhD, professor, PhD supervisor. Senior member of CCF. His main research interests include broadband communication network and Internet of things

  • 摘要:

    从智能手机、智能手表等小型终端智能设备,到智能家居、智能网联车等大型应用,再到智慧生活、智慧农业等,人工智能已经逐渐步入人们的生活,改变传统的生活方式. 各种各样的智能设备会产生海量的数据,传统的云计算模式已无法适应新的环境. 边缘计算在靠近数据源的边缘侧实现对数据的处理,可以有效降低数据传输时延,减轻网络传输带宽压力,提高数据隐私安全等. 在边缘计算架构上搭建人工智能模型,进行模型的训练和推理,实现边缘的智能化,对于当前社会至关重要. 由此产生的新的跨学科领域——边缘智能(edge intelligence,EI),开始引起了广泛的关注. 全面调研了边缘智能相关研究:首先,介绍了边缘计算、人工智能的基础知识,并引出了边缘智能产生的背景、动机及挑战. 其次,分别从边缘智能所要解决的问题、边缘智能模型研究以及边缘智能算法优化3个角度对边缘智能相关技术研究展开讨论. 然后,介绍边缘智能中典型的安全问题. 最后,从智慧工业、智慧生活及智慧农业3个层面阐述其应用,并展望了边缘智能未来的发展方向和前景.

    Abstract:

    From smart terminal devices such as smart phones and smart watches, to large-scale intelligent applications, such as smart homes, Internet of vehicles, intelligent life and intelligent agriculture. Artificial intelligence (AI) has gradually entered and changed the life of human being. In this context, various of intelligent devices have produced massive amount of data, making traditional cloud computing paradigm unable to adapt to the unprecedented challenge. Instead, edge computing which aims to process the data at the edge of the network has the great potential to reduce latency and bandwidth pressure, as well as protect data privacy and security. Building AI models upon edge computing architecture, training and inferring the model, realizing the intelligence of the edge are crucial to the current social. As a result, a new interdisciplinary field, edge intelligence (EI), has begun to attract widespread attention. We make a comprehensive study on EI. Specifically, firstly introduce the basic knowledge of edge computing and AI, which leads to the background, motivation and challenges of EI. Secondly, the research on EI related technologies is discussed from three aspects, namely, the problems, the models and the algorithm. Further, the typical security problems in EI are introduced. Next, the applications of EI are described from three aspects of intelligent industry, intelligent life and intelligent agriculture. Finally, we propose the direction and prospect of EI in the future development.

  • 自2005年Sahai等人[1]提出模糊身份基加密方案后,属性基密码体制成为研究的热点. 属性基密码体制使用一组关联属性代替用户的身份信息,密文或密钥与一个事先定义的访问策略或是谓词结构相关联,当用户的属性满足访问策略或谓词结构时就可以进行解密. 因此属性基密码克服了身份基密码一对一的通信限制,只要用户拥有满足访问策略或谓词结构的属性集就可以进行通信,从而实现了一对多的通信并实现了细粒度的访问控制[2-3]. 为了满足不同的应用需求,一些新型的属性基加密方案[4-11]和属性基签名方案[12-15]相继被提出.

    在属性基签名方案中,由于使用一组属性集代替用户,隐藏了真实的身份信息从而获得了匿名性. 签名者根据属性授权机构颁发的属性密钥对消息进行签名,属性密钥由属性授权机构产生并秘密发送给签名者,一旦属性密钥发生泄露或密钥传输时遭受主动攻击被截获,那么获得密钥的任何人都能产生一个有效签名. 与此同时,签名数据中可能包含一些敏感信息,例如身份证号、手机号或者个人金融交易记录等. 这些敏感信息泄露可能会带来个人隐私泄露甚至是国家机密泄露的极大风险. 因此属性基签名中的密钥泄露和敏感信息泄露问题是亟待解决的关键问题.

    本文的主要贡献包括3个方面:

    1) 提出了前向安全的高效属性基可净化签名(efficient and forward-secure attribute-based sanitizable signature, FABSS)方案,并在标准模型下证明该方案的安全性. 方案的安全性可规约到η-DHE(η-Diffie-Hellman exponent)困难问题假设.

    2) 提出的方案利用属性集合和谓词结构提供细粒度访问控制,保护签名者的隐私;利用前向安全技术解决了密钥泄露问题;利用可净化签名技术对原始数据进行脱敏,解决了敏感数据泄露问题.

    3) 提出的方案具有固定签名长度,并且在验证阶段只需要常数个配对运算,使得通信开销和计算开销低,因此提出的方案具有高效性.

    属性基加密方案根据访问策略的不同布置可分为密钥策略的属性基加密方案[2]和密文策略的属性基加密方案[16]. 在密钥策略的属性基加密方案中,用户访问策略与密钥关联,一组属性集与密文相关联. 当密文中的属性集满足访问策略时,用户可以正确解密该密文. 在密文策略的属性基加密方案中,事先定义的一个访问策略嵌入到密文中,密钥由用户属性集标识,只有当标识密钥的属性集满足密文中的访问策略时用户才能正确解密.

    为了解决数据完整性、认证性以及用户细粒度访问控制问题, Maji等人[17]在2011年首次提出属性基签名方案,并在一般群模型中证明了该方案的安全性. Okamoto等人[18]基于CDH (computational Diffie-Hellman)困难问题假设,提出了标准模型下证明安全的属性基签名方案. 标准模型下证明安全的方案通常需要大量的计算开销,其中配对运算的代价尤其高昂. 为了提高效率,Gagn等人[19]设计了具有短配对运算的高效属性基签名方案. 为了进一步提高效率,Anada等人[20]提出了无配对运算的属性基签名方案. 然而文献[19-20]中的方案仅仅考虑性能的提升而没有考虑密钥泄露问题. 在密钥颁发和存储过程中,可能会遭受主动攻击或者由于管理不当造成密钥泄露,恶意攻击者在获得密钥后就能产生任意时间片段签名. 为了解决密钥泄露问题,在2015年,Wei等人[21]提出了门限结构的前向安全属性基签名方案,并在标准模型下给出了安全性证明. 另一个解决密钥泄露的方法是密钥隔离技术,2017年,Rao[22]提出一个签名策略的属性基密钥隔离签名,将密钥分为长期密钥和短期密钥,并将长期密钥保存在一个安全的设备中,从而保证了密钥的安全. 然而在签名方案中,可能发生泄露的不仅仅有签名者密钥,同时还包括消息中的一些敏感信息,例如个人医疗记录信息、金融机构交易信息以及政府部门政务信息等. 这些信息一旦发生泄露将会给个人、金融市场或者政府部门带来极大的安全风险. 因此我们需要对数据中的敏感数据进行编辑从而隐藏真实信息,这样的方法可称之为“净化”. 在可净化签名中,净化者可以在不知道签名者密钥的前提下对数据进行编辑并重新生成一个有效签名. Ateniese等人[23]首次提出可净化签名概念,利用变色龙哈希设计了可净化签名方案并在随机预言模型下给出了安全性证明. Agrawal等人[24]提出了在标准模型下证明安全的可净化签名方案,方案的安全性规约到CDH困难问题假设. 但该方案需要大量的配对运算和指数运算,具有较高的运算开销. 为了改进效率,Pöhls等人[25]提出了高效的可净化方案. 可审计性要求签名者可以对净化者的行为进行追责,2017年,Beck等人[26]提出一个具有强审计性的可净化签名,不仅实现对净化者的追责,同时也防止签名者对净化者的恶意指责. 为了获得细粒度访问控制和以及签名者隐私,刘西蒙等人[27]给出属性基可净化签名方案的构造并在标准模型下给出了方案的安全性证明. 文献[25]利用门限结构作为访问策略,为了获得更丰富和灵活的访问结构,莫若等人[28]和Mo等人[29]先后给出了基于树形访问结构的属性基可净化签名方案和具有灵活访问结构的属性基可净化签名方案,方案支持与门、或门和门限结构. 为了同时获得访问控制和可审计性,Samelin等人[30]提出了属性基可净化签名并实现了对净化者的追责. 为了解决属性基签名中签名者滥用签名问题,李继国等人[31]提出了可追踪的属性基可净化签名方案,不仅实现了恶意用户追踪,而且还保证了敏感数据的隐私.

    本节介绍FABSS方案中使用的相关密码学知识,其中包括双线性映射、拉格朗日插值、η-DHE假设.

    G1G2是2个p阶乘法循环群,p是大素数.gG1的一个生成元. 一个双线性映射e:G1×G1G2具有3个性质:

    1) 双线性. 对任意a,bZp,都有e(ga,gb)=e(g,g)ab.

    2) 非退化性. e(g,g)1.

    3) 可计算性. 对所有g1,g2G1,存在多项式时间算法计算e(g1,g2).

    p为素数,SZp,拉格朗日系数定义为ΔSi(x)=jS,jixjij,其中iZp. 给定Zp上的d个点(1,q1), (2,q2), …, (d,qd)d1次多项式q(x)可以重构为q(x)=iSq(i)ΔSi(x),其中|S|=d.

    η-DHE问题. G1是一个p阶群,gG1的一个生成元,随机选取aZp.给定元组(g,ga,ga2,,gaη,gaη+2,,ga2η),计算gaη+1.

    ε-(η-DHE)困难问题假设. 若不存在多项式时间算法以不可忽略的概率ε解决G1上的η-DHE困难问题,则称ε-η-DHE困难问题假设在群G1上是成立的.

    借鉴文献[21]中前向安全的属性基签名的形式化定义,本节给出FABSS方案的形式化定义和安全模型.

    FABSS方案包括设置、密钥生成、密钥更新、签名、净化和验证6个算法,每个算法的定义为:

    1)设置. 算法输入安全参数λ、系统时间片段总数T、系统门限值d,输出公共参数params和主密钥msk.

    2)密钥生成. 该算法由属性授权中心执行. 算法输入公共参数params、主密钥msk、签名者属性集wa以及初始时t0,输出初始时间片段密钥SKt0.

    3)密钥更新. 该算法由签名者执行. 算法输入公共参数params、当前时间片段tj的密钥SKtj以及时间片段tj,其中tj<tj.算法输出时间片段tj的密钥SKtj.

    4)签名. 算法输入公共参数params、当前时间片段tj的密钥SKtj、消息M、签名者属性集wa、净化者属性集wτ以及签名策略Γd,S(). 若签名者属性集wa满足签名策略Γd,S(),即|waS|d,算法输出消息M的签名σ以及秘密值集合SI. 其中d是门限值,S是谓词结构中的属性集合.

    5)净化. 该算法由净化者执行. 签名者公开声明允许净化的消息索引集合IN{1,2,,nm},其中Nnm.净化者获得由签名者发送的秘密值集合SI. 算法输入消息M、签名σ、签名者属性集wa、净化者属性集wτ以及秘密值集合SI. 算法输出净化消息M和净化签名σ.

    6)验证. 算法输入公共参数params、当前时间片段tj、消息M以及签名σ. 若验证签名有效,输出accept;否则,输出reject.

    FABSS系统框架如图1所示. 签名者将属性集wa以及初始时间片段t0发送给属性授权中心,属性授权中心为签名者生成时间片段t0的密钥SKt0. 签名者用私钥SKt0对消息M进行签名获得σ,并生成秘密值集合SI,将(M,σ,SI)通过安全信道发送给净化者. 净化者对允许净化范围内的消息进行修改,重新生成关于净化后消息M的签名σ. 净化者将(M,σ)发送给验证者,验证者通过验证算法判断签名是否有效. 此后,签名者通过密钥更新算法生成时间片段t1的密钥SKt1,并重复上述过程.

    图  1  FABSS 框架
    Figure  1.  The framework of FABSS

    借鉴文献[21]的思想,给出FABSS方案的前向安全性和不变性安全模型.

    FABSS方案满足传统ABS方案不可伪造性的同时达到了前向安全性. FABSS方案的前向安全性可以通过挑战者B和敌手A之间的游戏来刻画.

    基于文献[21]给出的安全模型,定义FABSS的前向安全性游戏.

    1)初始化. A将需要挑战的签名策略Γd,S()和时间片段tj发送给B.

    2)设置. B运行设置算法,生成公共参数params和主密钥msk,设置初始时间片段t0. 挑战者B将公共参数params发送给A,主密钥msk保密.

    3)密钥生成询问. A自适应选择属性wa和时间片段tj,将watj交给B. 通过密钥生成算法,B生成对应的密钥SKtj并发送给A.

    4)密钥更新询问. A随机选择一个新时间片段tj并要求B执行密钥更新算法,此时当前时间片段tj被更新为后一时间片段tjB将更新后的密钥SKtj发送给A.

    5)签名询问. A自适应地选择签名者属性集wa,净化者属性集wτ,消息M和签名策略Γd,S()并发送给BB通过签名算法产生当前时间片段tj的签名σ,并发送给A.

    6)伪造. A生成关于消息M={m1,m2,,mnm},签名策略Γd,S()在时间片段tj的签名σ. 若满足条件①~③,则称A赢得前向安全性游戏.

    σ是一个有效签名;

    A没有对(wa,tj)进行密钥生成询问,其中属性集wa满足签名策略Γd,S()并且tjtj

    A没有在时间片段tj对消息M={m1,m2,,mnm}进行签名询问.

    定义1. 对于任意概率多项式时间t的敌手,如果赢得上述游戏的概率ε是可忽略的,那么就称FABSS方案满足前向安全性.

    FABSS方案的不变性要求净化者只能对允许净化范围内的消息进行修改,无法对净化范围之外的消息进行任何操作. 不变性可以通过敌手A和挑战者B之间的游戏来刻画.

    1)初始化. A将挑战索引集合IN和签名策略Γd,S()发送给B,其中IN表示净化者可以执行净化操作的消息索引集合.

    2)设置. B执行设置算法产生公开参数params和主密钥msk,将公开参数params发送给A,主密钥msk保密.

    3)询问. A 自适应地进行多项式次密钥生成询问,密钥更新询问和签名询问. 其中A可以进行qs次签名询问,在第j次签名询问中,A询问关于消息Mj={mj,1,mj,2,,mj,nm}的签名σj. B将签名σj和秘密值集合SI发送给A.

    4)伪造. A输出关于消息M={m1,m2,,mnm},时间片段tj和签名策略Γd,S()的签名σ,若满足条件①~③,则称A赢得不变性游戏.

    σ是一个有效签名;

    A没有对(wa,tj)进行密钥生成询问,其中属性集合wa满足签名策略Γd,S()并且tjtj

    ③ 对于任何j{1,2,,qs},存在iIN使得mj,imi.

    定义2. 如果任意概率多项式时间t的敌手进行至多qk次密钥询问和至多qs次签名询问,最终赢得不变性游戏的概率ε是可忽略的,则FABSS方案具有ε-不变性.

    根据文献[32]给出的二叉树结构,利用该结构分配时间片段. 在二叉树结构中,如图2所示,将完整时间片段T分解为t0,t1,,tT1时间片段. 每个时间片段对应一个层数为l的满二叉树的叶子节点. 其中根节点用一个空串γ标记,k(1kl)层上的每个节点v用一个二进制比特串bv{0,1}k表示,bv与节点v到根节点的路径相关,其中0表示左子节点,1表示右子节点. 对每个二进制串b{0,1}k,都对应二叉树第k层上的一个节点,将这个节点记为vb,并令bv[i]表示bv中的第i位. 例如初始时间片段t0对应节点vt0bvt0=0lt1时间片段的节点为vt1bvt1=0l11. 用Pathv表示节点v到根节点路径上包含的所有节点的集合,R(v)表示v的右子节点. 对于时间片段tj及其对应的节点vtj,定义集合Vtj={R(v)|vPathvtj,R(v)Pathvtj}{vtj}. 如图2所示,Pathvt0={γ,v0,v00,vt0}Vt0={v1,v01,vt1,vt0}. 基于上述构造,可得引理1.

    图  2  时间的二叉进化树
    Figure  2.  Binary evolutionary tree of time

    引理1. 存在时间tjtj,若tj>tj,对于每个节点vVtj,存在一个节点vVtj,有bv=bv||b. 其中,b{0,1}kk=|bv||bv|.

    1)设置. 选取安全参数λ,生成p阶双线性群G1G2,其中p是大素数;e:G1×G1G2是双线性映射. 令T=2l为总时间片段,U={1,2,,n+d}表示属性域,其中n为常数. Ω={ω1,ω2,,ωd1}为缺省属性集,ωiZp. 设SZpiS,定义拉格朗日系数ΔSi(x)=jS,jixjij. 随机选取αZp,计算Z=e(g,g)α,其中gG1的生成元. 随机选取群元素fa,fτ和群元素集合H={h1,h2,,hl}W={w1,w2,,wnm}F={f1,f2,,fη},其中nm是消息长度,η=n+d1. 则params= {G1,G2,e,g,h0,w0,fa,fτ,H,W,F,T,U,Ω,Z}是公共参数,主密钥为α.

    2)密钥生成. 算法输入签名者属性集waU,主密钥α,公共参数params和初始时间片段t0. 首先选择一个d1次多项式q(x),满足q(0)=α. 随机选取riZp,其中iwa;随机选取ri,vZp,其中vVt0. 计算μi=griφi={fri1,fri2,,frii1,frii+1,..,friη}ski,v=(gq(i)(fafi)ri(h0|bv|k=1hbv[k]k)ri,v,gri,v,hri,v|bv|+1,,hri,vl).因此t0时间片段的密钥SKt0={μi,φi,{ski,v|vVt0}},其中iwa.

    3)密钥更新. 算法输入当前时间片段tj的密钥SKtj,后续时间片段tj和公共参数params. 将当前时间片段密钥SKtj表示成:

    ski,v={ai,0,ai,1,ai,|bv|+1,,ai,l}SKtj={μi,φi,{ski,v|vVtj}},因为tj>tj,由文献[32]可得,对每个节点vVtj,一定存在节点vVtj,有b满足bv=bv||b. 随机选取riZp,其中iwa;随机选取ri,vZp,其中vVtj. 计算μi=μi×griφi={fri1fri1,fri2,,frii1frii1,frii+1frii+1,,friηfriη}ski,v = {ai,0(fafi)ri(h0|bv|k=1hbv[k]k)ri,v|bv|k=|bv|+1abv[k]i,k,ai,1gri,ai,|bv|+1hri,v|bv|+1,,ai,lhri,vl} = {ai,0,ai,1,ai,2,ai,|bv|+1,,ai,l}. 时间片段tj的密钥为SKtj={μi,φi,{ski,v|vVtj}},删除当前时间片段tj的密钥SKtj.

    4)签名. 算法输入消息M={m1,m2,,mnm},签名策略Γd,S(),签名者属性集wa,净化者属性集^wτ,密钥SKtj,要求属性集wa满足Γd,S(wa)=1,即|waS|d. 因此存在属性wawaS,其中|wa|=d. 选取缺省属性集ΩΩ,满足waΩ=. 令^wa=waΩ,当i^wa,计算ˉai,0=ai,0j^wa,jifrij=(h0lk=1hbvtj[k]k)ri,vtjgq(i)(faj^wafj)ria0=i^wa(ˉai,0)Δ^wai(0)=(h0lk=1hbvtj[k]k)r(faj^wafj)rgαa1=i^wa(ai,1)Δ^wai(0)=grμ=i^wa(μi)Δ^wai(0)=gr. 此时有r=i^waΔ^wai(0)ri,vtjr=i^waΔ^wai(0)ri. 随机选取ra,s,z,rτZp,计算σ0=a0(faj^wafj)ra(h0lk=1hbvtj[k]k)s(w0nmj=1wmij)z(fτj^wτfj)rτσ1=a1gsσ2=μgraσ3=grτσ4=gz. 因此在当前时间片段tj产生的签名为σ={σ0,σ1,σ2,σ3,σ4}. 签名者计算秘密值SIi=wzi,其中iIN. 用SI表示秘密值集合,即SI={SI1,SI2,,SI|IN|}IN={1,2,,N}表示签名者允许净化的消息索引集合,其中Nnm.

    5)净化. 净化者获得签名σ和秘密值集合SI,首先通过验证算法判断签名是否有效,若是有效签名,定义此次需要净化的消息索引集IIN. 令I1={iI:mi=0,mi=1}I2={iI:mi=1,mi=0}. 净化者随机选取ra,s,z,rτZp,计算σ0=σ0(faj^wafj)ra(h0lk=1hbvtj[k]k)s (fτj^wτfj)rτiI1SIiiI2SIi(nmj=1wmijw0)zσ1=σ1gsσ2=σ2graσ3=σ3grτσ4=σ4gz. 净化后的签名为σ={σ0,σ1,σ2,σ3,σ4}.

    6) 验证. 为了验证签名是否有效,需要计算等式 Z=e(σ0,g)e(σ1,h0lk=1hbvtj[k]k)e(σ2,fτj^wτfj)1e(σ3,fτj^wτfj)e(σ4,w0nmj=1wmij)是否成立. 若等式成立,则签名有效;否则拒绝该签名. 验证算法不仅可用于验证净化消息签名对,同时也可以验证非净化的消息签名是否有效.

    本节将分别给出FABSS方案的安全性分析.

    验证方程既能验证原始签名σ,同时也能验证净化签名σ. 首先给出对原始签名σ的验证过程,在5.2节中给出净化签名的净化性分析. 给定签名σ={σ0,σ1,σ2,σ3,σ4},通过证明等式(1)成立,表明FABSS方案满足正确性要求. 下面分别验证方程中的每一部分.

    (σ0,g)=e(g,(faj^wafj)ra+r(h0lk=1hbvtj[k]k)s+r(fτj^wτfj)rτ(w0nmj=1wmij)zgα)=e(gα,g)e((w0nmj=1wmij)z,g)e(g,(fτj^wτfj)rτ(faj^wafj)ra+r)e(g,(h0lk=1hbvtj[k]k)s+r)e(σ1,h0lk=1hbvtj[k]k)=e(h0lk=1hbvtj[k]k,gr+s)=e((h0lk=1hbvtj[k]k)r+s,g)e(σ2,faj^wafj)=e(gra+r,faj^wafj)=e(g,(faj^wafj)ra+r)e(σ3,fτj^wτfj)=e(grb,fτj^wτfj)=e(g,(fτj^wτfj)rτ)e(σ4,w0nmj=1wmij)=e(w0nmj=1wmij,gz)=e(g,(w0nmj=1wmij)z)

    因此有

    e(σ0,g)e(σ1,h0lk=1hbvtj[k]k)e(σ2,faj^wafj)e(σ3,fτj^wτfj)1e(σ4,w0nmj=1wmij)=e(g,g)α=Z. (1)

    综上所述,方案满足正确性.

    净化者操作后的净化签名为σ={σ0,σ1,σ2,σ3,σ4}.当iI1时,mimi=1σ记为1;当iI2时,mimi=1σ记为0. σ0=σ0(faj^wafj)ra(h0lk=1hbvtj[k]k)s(fτj^wτfj)rτiI1SIiiI2SIi(w0nmj=1wmij)z=(fτj^wτfj)rτ+rτgα (faj^wafj)ra+r+ra(h0lk=1hbvtj[k]k)s+r+s\cdot {\left({w}_{0}\displaystyle\prod\limits _{j=1}^{{n}_{m}}{w}_{j}^{{m}_{i}' }\right)}^{z+{z}' }{\sigma }_{1}' = {\sigma }_{1}{g}^{{s}' }={g}^{r+s+{s}' } {\sigma }_{2}' ={\sigma }_{2} {g}^{{r}_{\mathrm{a}}' }={g}^{{r}_{\mathrm{a}}+{r}' +{r}_{\mathrm{a}}' } {\sigma }_{3}' ={\sigma }_{3}{g}^{{r}_{\mathrm{\tau }}' }= {g}^{{r}_{\mathrm{\tau }}+{r}_{\mathrm{\tau }}' } {\sigma }_{4}' ={\sigma }_{4}{g}^{{z}' }={g}^{z+{z}' } . 综上所述,净化后的签名{\sigma }' = \{{\sigma }_{0}' ,{\sigma }_{1}' ,{\sigma }_{2}' ,{\sigma }_{3}' ,{\sigma }_{4}' \}与原始签名\sigma =\{{\sigma }_{0},{\sigma }_{1},{\sigma }_{2}, {\sigma }_{3}, {\sigma }_{4}\}有相同的分布. 因此签名 {\sigma }' \sigma 都能通过验证方程.

    定理1. 在{\varepsilon }' \text{-}(\eta \text{-}\mathrm{D}\mathrm{H}\mathrm{E})困难问题假设下,提出的FABSS方案具有\left(\varepsilon ,{q}_{\mathrm{s}}\right) \text{-}\mathrm{前}\mathrm{向}\mathrm{安}\mathrm{全}\mathrm{性}. 其中{\varepsilon }' \ge \dfrac{\varepsilon }{4T\times {q}_{\mathrm{s}}\times ({n}_{m}+1)} T 是时间片段总数, {n}_{m} 是消息的长度, {q}_{\mathrm{s}} 是敌手A进行签名询问的次数.

    证明. 通过敌手A和挑战者B之间的交互游戏证明定理1.

    1)初始化. 给B一个 \eta \text{-}\mathrm{D}\mathrm{H}\mathrm{E} 困难问题的随机实例 \{g,{g}_{1}={g}^{a},{g}_{2}={g}^{{a}^{2}},… ,{g}_{\eta }={g}^{{a}^{\eta }},{g}_{\eta +2}={g}^{{a}^{\eta +2}},… ,{g}_{2\eta }={g}^{{a}^{2\eta }}\} ,其中 g 是素数阶群 {G}_{1} 的生成元, a\in {\mathbb{Z}}_{p} . A选择挑战签名谓词{\varGamma }_{{d}^{*},{S}^{*}}(\cdot )和时间片段 {t}_{{j}^{*}} 并发送给B,其中 0\le {t}_{{j}^{*}}\le T={2}^{l}-1 . 同时定义属性域 U=\{\mathrm{1,2},… ,n+d\} ,其中 n 是常数. 选择缺省属性集\varOmega =\left\{{\omega }_{1},{\omega }_{2},… ,{\omega }_{d-1}\right\}. 在以下交互中,B尝试计算得到 {g}_{\eta +1}={g}^{{a}^{\eta +1}} .

    2)设置. B通过如下方式生成公共参数 params 和主密钥 msk . B随机选取 {\alpha }' ,{\delta }_{\mathrm{a}},{\delta }_{\mathrm{\tau }},{\delta }_{1},…,{\delta }_{\eta }\in {\mathbb{Z}}_{p} ,计算 {f}_{i}={g}^{{\delta }_{i}}{g}_{\eta -i+1} ,其中 1\le i\le \eta ;选择缺省属性子集{\varOmega }^{*{'}}\subset \varOmega,计算{f}_{\mathrm{a}}={g}^{{\delta }_{\mathrm{a}}}\displaystyle\prod\limits _{i\in {S}^{*}\cup {\varOmega }^{*{'}}}{f}_{i}^{-1};令 {w}_{\mathrm{\tau }}\subseteq U ,计算 {f}_{\mathrm{\tau }}={g}^{{\delta }_{\mathrm{\tau }}}\displaystyle\prod\limits _{i\in {w}_{\mathrm{\tau }}}{f}_{i}^{-1} ;随机选取 {\theta }_{0},{\theta }_{1},… ,{\theta }_{l}\in {\mathbb{Z}}_{p} ,计算 {h}_{k}={g}^{{\theta }_{k}}{g}_{\eta -k+1}^{-1} {h}_{0}={g}^{{\theta }_{0}}\displaystyle\prod\limits _{k=1}^{l}{g}_{\eta -k+1}^{{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]} ,其中 1\le k\le l ;随机选取 \zeta \in \{\mathrm{0,1},… ,{n}_{m}\} 以及2个随机数集合 X=\{{x}_{0},{x}_{1},…,{x}_{{n}_{m}}\} Y=\{{y}_{0},{y}_{1},…,{y}_{{n}_{m}}\} ,其中 {x}_{i}\in {\mathbb{Z}}_{2{q}_{\mathrm{s}}-1} {y}_{i}\in {\mathbb{Z}}_{p} ;计算 {w}_{i}={{g}_{1}}^{{x}_{i}}{g}^{{y}_{i}} {w}_{0}={{g}_{1}}^{{x}_{0}-2\zeta {q}_{\mathrm{s}}}{g}^{{y}_{0}} ,其中 1\le i\le {n}_{m} ;计算Z=e\left({g}_{1},{g}_{\eta }\right) e{\left(g,g\right)}^{{\alpha }' }=e{\left(g,g\right)}^{{\alpha }' +{a}^{\eta +1}}. 最后B设置params= \{{G}_{1},{G}_{2},e,g,{f}_{\mathrm{a}},{f}_{\mathrm{\tau }},{h}_{0},{w}_{0},U,\varOmega ,T,H,W, Z\}为公共参数,主密钥 msk \alpha ={\alpha }' +{a}^{\eta +1} . 定义2个函数,J\left(M\right)={x}_{0}+\displaystyle\sum _{j=1}^{{n}_{m}}{x}_{j}{m}_{j}-2\zeta {q}_{\mathrm{s}}K\left(M\right)={y}_{0}+\displaystyle\sum _{j=1}^{{n}_{m}}{y}_{j}{m}_{j}. 此时{w}_{0}\displaystyle\prod\limits _{j=1}^{{n}_{m}}{w}_{j}^{{m}_{i}}={g}_{1}^{J\left(M\right)}{g}^{K\left(M\right)}.

    3)密钥生成询问. A最多进行 {q}_{\mathrm{k}} 次密钥生成询问. A询问属性集 {w}_{\mathrm{a}} 在时间片段 {t}_{j} 的密钥 {S K}_{{t}_{j}} ,此时必须满足 |{w}_{\mathrm{a}}\cap {S}^{*}| < {d}^{*} 或者 {|w}_{\mathrm{a}}\cap {S}^{*}|\ge {d}^{*} {t}_{j} > {t}_{{j}^{*}} . 下面分别讨论这2种情况.

    ①当 |{w}_{\mathrm{a}}\cap {S}^{*}| < {d}^{*} 时,B定义3个属性集合 \varGamma , {\varGamma }' , S ,使\varGamma =\left({w}_{\mathrm{a}}\cap {S}^{*}\right)\cup {\varOmega }^{*{'}} \varGamma \subseteq {\varGamma }' \subseteq S ,其中 \left|{\varGamma }' \right|={d}^{*}-1 . 令 S={\varGamma }' \cup \left\{0\right\} . 同时随机选取一个 {d}^{*}-1 次多项式 q\left(x\right) ,满足 q\left(0\right)=\alpha ={\alpha }' +{a}^{\eta +1} .

    B随机选取 {r}_{i},{\rho }_{i}\in {\mathbb{Z}}_{p} ,令 q\left(i\right)={\rho }_{i} ,其中 i\in {\varGamma }' . 随机选取 {r}_{i,v}\in {\mathbb{Z}}_{p} ,其中 v\in {V}_{{t}_{j}} . 计算密钥{S K}_{{t}_{j}} = \{{\mu }_{i},{\varphi }_{i},\{{sk}_{i,v}|v\in {V}_{{t}_{j}}\}\},其中 {\mu }_{i}={g}^{{r}_{i}} {\varphi }_{i}= \{{f}_{1}^{{r}_{i}},{f}_{2}^{{r}_{i}},… ,{f}_{i-1}^{{r}_{i}},{f}_{i+1}^{{r}_{i}},…,{f}_{\eta }^{{r}_{i}}\} {sk}_{i,v}= \left\{{g}^{{\rho }_{i}} ({f}_{a}{f}_{i})^{{r}_{i}}\left({h}_{0} \displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]}\right)^{{r}_{i,v}},{g}^{{r}_{i,v}},{h}_{\left|{b}_{v}\right|+1}^{{r}_{i,v}},… ,{h}_{l}^{{r}_{i,v}}\right\} = \{{a}_{i,0}, {a}_{i,1},… , {a}_{i,\left|{b}_{v}\right|+1},… ,{a}_{i,l}\} . B随机选取 {r}_{i}' \in {\mathbb{Z}}_{p} ,其中i\in \left({w}_{\mathrm{a}}\cap \varOmega \right)/{\varGamma }'. 令 {r}_{i}={r}_{i}' -{\varDelta }_{0}^{S}\left(i\right){a}^{i} . 由拉格朗日插值可得q\left(i\right)=\displaystyle\sum _{j\in S}q\left(j\right){\varDelta }_{j}^{S}\left(i\right). 随机选取 {r}_{i,v}\in {\mathbb{Z}}_{p} ,其中 v\in {V}_{{t}_{j}} . 计算密钥 {S K}_{{t}_{j}}=\left\{{\mu }_{i},{\varphi }_{i},\left\{{sk}_{i,v}|v\in {V}_{{t}_{j}}\right\}\right\} ,其中 {\mu }_{i}={g}^{{r}_{i}}={g}^{{r}_{i}' }{g}^{-{\varDelta }_{0}^{S}\left(i\right)} {\varphi }_{i}=\left\{{f}_{1}^{{r}_{i}},\;{f}_{2}^{{r}_{i}},\;… ,\;{f}_{i-1}^{{r}_{i}},\;{f}_{i+1}^{{r}_{i}},\;…,\;{f}_{\eta }^{{r}_{i}}\right\}=\{{f}_{1}^{{r}_{i}' }{\left({g}^{{\delta }_{1}}{g}_{\eta }\right)}^{-{\varDelta }_{0}^{S}\left(i\right){a}^{i}},\;…, {f}_{i-1}^{{r}_{i}' }{\left({g}^{{\delta }_{\eta }}{g}_{1}\right)}^{-{\varDelta }_{0}^{S}\left(i\right){a}^{i}}({g}_{\eta -i+2} {{g}^{{\delta }_{i-1}})}^{-{\varDelta }_{0}^{S}\left(i\right){a}^{i}}{f}_{i+1}^{{r}_{i}' }{\left({g}^{{\delta }_{i+1}}{g}_{\eta -i}\right)}^{-{\varDelta }_{0}^{S}\left(i\right){a}^{i}} , {f}_{\eta }^{{r}_{i}' }\}= \{{f}_{1}^{{r}_{i}' } {\left({g}^{{\delta }_{1}}{g}_{\eta +i}\right)}^{-{\varDelta }_{0}^{S}\left(i\right)},\;…,\;{f}_{i-1}^{{r}_{i}' }{\left({g}^{{\delta }_{i-1}}{g}_{\eta +2}\right)}^{-{\varDelta }_{0}^{S}\left(i\right)}, {f}_{i+1}^{{r}_{i}' }({g}_{\eta } {{g}^{{\delta }_{i+1}})}^{-{\varDelta }_{0}^{S}\left(i\right)}, {f}_{\eta }^{{r}_{i}' }{\left({g}^{{\delta }_{\eta }}{g}_{i+1}\right)}^{-{\varDelta }_{0}^{S}\left(i\right)}\} {sk}_{i,v}=\big\{{g}^{q\left(i\right)}\left({f}_{\mathrm{a}} {f}_{i}\right)^{{r}_{i}}{\left({h}_{0}\displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]}\right)}^{{r}_{i,v}}, {g}^{{r}_{i,v}}, {h}_{\left|{b}_{v}\right|+1}^{{r}_{i,v}},\;… ,\;{h}_{l}^{{r}_{i,v}}\}\;=\;\{{a}_{i,0},\; {a}_{i,1},\;{a}_{i,\;\left|{b}_{v}\right|+1},\;… ,\;{a}_{i,l}\} . 此时,计算可得 {a}_{i,0}\;\;=\;\;{g}^{q\left(i\right)} {\left({f}_{0}{f}_{i}\right)}^{{r}_{i}}{\left({h}_{0}\displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]}\right)}^{{r}_{i,v}} = {\left({f}_{0}{f}_{i}\right)}^{{r}_{i}' -{\varDelta }_{0}^{S}\left(i\right){a}^{i}} \cdot {g}^{{\sum }_{j\in {\varGamma }' }q\left(j\right){\varDelta }_{j}^{S}\left(i\right)+q\left(0\right){\varDelta }_{0}^{S}\left(i\right)} {\left({h}_{0}\displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]}\right)}^{{r}_{i,v}}={g}^{{\sum }_{j\in {\varGamma }' }{\rho }_{i}{\varDelta }_{j}^{S}\left(i\right)}{g}^{{\alpha }' {\varDelta }_{0}^{S}\left(i\right)}\cdot {g}_{\eta +1}^{{\varDelta }_{0}^{S}\left(i\right)}{\left({f}_{\mathrm{a}}{f}_{i}\right)}^{{r}_{i}' }{g}_{i}^{-{\delta }_{j}{\varDelta }_{0}^{S}\left(i\right)}\left(\displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]} {h}_{0}\right)^{{r}_{i,v}}{\left({g}_{i}^{{\delta }_{\mathrm{a}}}\displaystyle\prod\limits _{j\in {S}^{*}\cup {\varOmega }^{*{'}}}{g}_{j}^{{\delta }_{j}}{g}_{\eta -j+i+1}\right)}^{{\varDelta }_{0}^{S}\left(i\right)}. 综上所述,模拟的密钥与原始方案生成的密钥具有相同的分布,因此对敌手而言模拟的密钥与原始密钥不可区分.

    ② 当 {w}_{\mathrm{a}}\cap {S}^{*}\ge {d}^{*} {t}_{j} > {t}_{{j}^{*}} 时,根据时间二进制树的定义可得,对节点 v\in {V}_{{t}_{j}} ,存在索引 \beta 使得 {b}_{v}\left[\beta \right]\ne {b}_{{v}_{{t}_{{j}^{*}}}}\left[\beta \right] . 为简化分析,令 \beta 为满足条件的最小索引值. B定义3个属性集合 \varGamma {\varGamma }' S ,使得\varGamma =\left({w}_{\mathrm{a}}\cap {S}^{*}\right)\cup {\varOmega }^{*{'}} \varGamma \subseteq {\varGamma }' \subseteq S ,其中 \left|{\varGamma }' \right|={d}^{*}-1 . 令 S={\varGamma }' \cup \left\{0\right\} . 随机选取 {d}^{*}-1 次多项式 q\left(x\right) ,满足 q\left(0\right)=\alpha ={\alpha }' +{a}^{\eta +1} .

    B随机选取 {r}_{i} {\rho }_{i}\in {\mathbb{Z}}_{p} ,令 q\left(i\right)={\rho }_{i} ,其中i\in {\varGamma }'.随机选取 {r}_{i,v}\in {\mathbb{Z}}_{p} ,其中 v\in {V}_{{t}_{j}} . 计算密钥{S K}_{{t}_{j}}=\{{\mu }_{i},{\varphi }_{i}, \{{sk}_{i,v}|v\in {V}_{{t}_{j}}\}\},其中 {\mu }_{i}={g}^{{r}_{i}} {\varphi }_{i}= \{{f}_{1}^{{r}_{i}},{f}_{2}^{{r}_{i}},… ,{f}_{i-1}^{{r}_{i}},{f}_{i+1}^{{r}_{i}},…,{f}_{\eta }^{{r}_{i}}\} {sk}_{i,v}= \Bigg\{ ({g}^{{\rho }_{i}}{({f}_{\mathrm{a}}{f}_{i}))}^{{r}_{i}}\left({h}_{0} \displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]}\right)^{{r}_{i,v}} , {g}^{{r}_{i,v}},{h}_{\left|{b}_{v}\right|+1}^{{r}_{i,v}}, … , {h}_{l}^{{r}_{i,v}})\Bigg\}= ({a}_{i,0},{a}_{i,1} , … , {a}_{i,\left|{b}_{v}\right|+1},… ,{a}_{i,l}) . B随机选择 {r}_{i}\in {\mathbb{Z}}_{p} ,其中i\in \left({w}_{\mathrm{a}}\cap \varOmega \right)/{\varGamma }'. 计算 {\mu }_{i}={g}^{{r}_{i}} {\varphi }_{i}=\{{f}_{1}^{{r}_{i}},{f}_{2}^{{r}_{i}},… ,{f}_{i-1}^{{r}_{i}},{f}_{i+1}^{{r}_{i}},…,{f}_{\eta }^{{r}_{i}}\} ;随机选取 {r}_{i,v}' \in {\mathbb{Z}}_{p} ,其中 v\in {V}_{{t}_{j}} . 令 {r}_{i,v}={a}^{\beta }{\varDelta }_{0}^{S}\left(i\right)/{b}_{v}\left[\beta \right]-{b}_{{v}_{{t}_{{j}^{*}}}}\left[\beta \right]+{r}_{i,v}' .

    此时{sk}_{i,v}' =\{{a}_{i,0},\;{a}_{i,1},\;{a}_{i,\left|{b}_{v}\right|+1},\;… ,\;{a}_{i,l})= \Bigg\{ {g}^{q(i)}\left({f}_{\mathrm{a}}{f}_{i}\right)^{{r}_{i}} \cdot \left(\displaystyle\prod\limits _{k=1}^{|{b}_{v}|}{h}_{k}^{{b}_{v}[k]}{h}_{0}\right)^{{r}_{i,v}},{g}^{{r}_{i,v}},{h}_{\left|{b}_{v}\right|+1}^{{r}_{i,v}},… ,{h}_{l}^{{r}_{i,v}}\Bigg\},其中q\left(i\right)=\displaystyle\sum _{j\in {\varGamma }' }q\left(j\right) \cdot {\varDelta }_{j}^{S}\left(i\right)+q\left(0\right){\varDelta }_{0}^{S}\left(i\right). 此时

    \begin{split} {a}_{i,0}=&\left({g}^{q\left(i\right)}{\left({f}_{\mathrm{a}}{f}_{i}\right)}\right)^{{r}_{i}}{\left({h}_{0}\displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]}\right)}^{{r}_{i,v}}=\left({g}^{q\left(0\right){\varDelta }_{0}^{S}\left(i\right)}{\left({f}_{\mathrm{a}}{f}_{i}\right)}\right)^{{r}_{i}} \cdot \\& {g}^{\sum\limits _{j\in {\varGamma }' }q\left(j\right){\Delta }_{j}^{S}\left(i\right)}{\left(\displaystyle\prod\limits _{k=1}^{\beta -1}{g}_{\eta -k+1}^{{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]-{b}_{v}\left[k\right]}\right)}^{{r}_{i,v}}\left({g}^{{\theta }_{0}+\sum\limits _{k=1}^{\beta }{b}_{v}\left[k\right]{\theta }_{k}} \right)^{{r}_{i,v}} \end{split}.
    \begin{split} &{\left({g}_{\eta -\beta +1}^{({b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]-{b}_{v}[k\left]\right){r}_{i,v}}\right)}^{{r}_{i,v}}{\left(\displaystyle\prod\limits _{k=\beta +1}^{l}{g}_{\eta -k+1}^{{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]}\right)}^{{r}_{i,{v}}}= \\& {g}^{{\alpha }' {\varDelta }_{0}^{S}\left(i\right)}\left({g}_{\beta }^{\frac{{\varDelta }_{0}^{S}\left(i\right)}{{b}_{v}\left[k\right]-{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]}}{g}^{{r}_{i,v}' }\right)^{{\theta }_{0}+\sum\limits _{k=1}^{\beta }{b}_{v}\left[k\right]{\theta }_{k}}{g}^{\sum\limits _{j\in {\varGamma }' }{\rho }_{i}{\varDelta }_{j}^{S}\left(i\right)}\cdot \\& {g}_{\eta -\beta +1}^{{(b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]-{b}_{v}[k\left]\right){r}_{i,v}' }{\left(\displaystyle\prod\limits _{k=\beta +1}^{l}{g}_{\eta -k+\beta +1}^{{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]}\right)}^{\frac{{\varDelta }_{0}^{S}\left(i\right)}{{b}_{v}\left[k\right]-{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]}} \cdot \\& {\left({f}_{0}{f}_{i}\right)}^{{r}_{i}}{\left(\displaystyle\prod\limits _{k=\beta +1}^{l}{g}_{\eta -k+\beta +1}^{{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]}\right)}^{{r}_{i,v}' }; \\& {a}_{i,1}={g}^{\frac{{a}^{\beta }{\varDelta }_{0}^{S}\left(i\right)}{{b}_{v}\left[k\right]-{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right]}+{r}_{i,v}' }={g}_{\beta }^{{\varDelta }_{0}^{S}\left(i\right)/({b}_{v}\left[k\right]-{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right])}{g}^{{r}_{i,v}' }; \\&{a}_{i.k}={\left({g}^{{\theta }_{k}}{g}_{\eta -k+1}^{-1}\right)}^{{a}^{\beta }{\varDelta }_{0}^{S}\left(i\right)/({b}_{v}\left[k\right]-{b}_{{v}_{{t}_{{j}^{*}}}}\left[k\right])+{r}_{i,v}' }=\\&\left({g}_{\beta }^{{\theta }_{k}} {g}_{\eta -k+\beta +1}^{-1}\right)^{{\varDelta }_{0}^{S}\left(i\right)/({b}_{v}\left[k\right]-{b}_{{v}_{{t}_{{js}^{*}}}}\left[k\right])}{\left({g}^{{\theta }_{k}}{g}_{\eta -k+1}^{-1}\right)}^{{r}_{i,v}' } . \end{split}

    最后B随机选取 {r}_{i,v}'' \in {\mathbb{Z}}_{p} ,计算 {sk}_{i,v}=\{{a}_{i,0}\displaystyle\prod\limits _{k=\beta +1}^{\left|{b}_{v}\right|}{a}_{i,k}^{{b}_{v}\left[k\right]} \cdot {\left({h}_{0}\displaystyle\prod\limits _{k=1}^{\left|{b}_{v}\right|}{h}_{k}^{{b}_{v}\left[k\right]}\right)}^{{r}_{i,v}'' },{a}_{i,1}{g}^{{r}_{i,v}'' },{a}_{i,\left|{b}_{v}\right|+1}{h}_{\left|{b}_{v}\right|+1}^{{r}_{i,v}'' },{a}_{i,\left|{b}_{v}\right|+2} {h}_{\left|{b}_{v}\right|+2}^{{r}_{i,v}'' }, …, {a}_{i,l}{h}_{l}^{{r}_{i,v}'' }) . 综上所述,B成功模拟 {t}_{y} 时间片段密钥 {S K}_{{t}_{j}} .

    4)密钥更新询问. 为了从当前时间片段 {t}_{j} 获得后续时间片段 {t}_{{j}' } 的密钥 {S K}_{{t}_{{j}' }} AB进行密钥更新询问. B通过原始方案计算更新密钥 {S K}_{{t}_{{j}' }} 并发送给A.

    5)签名询问. 给定消息 M=\{{m}_{1},{m}_{2},…, {m}_{{n}_{m}}\} 和签名策略{\varGamma }_{d,S}\left(\cdot \right),若 J\left(M\right)=0 ,模拟终止;否则,B随机选取 {r}_{\mathrm{a}},s,{z}' ,{r}_{\mathrm{\tau }}\in {\mathbb{Z}}_{p} ,令 z={z}' -\dfrac{{a}^{\eta }}{J\left(M\right)} ,计算

    \begin{split} \sigma =&\{{\sigma }_{0},{\sigma }_{1},{\sigma }_{2},{\sigma }_{3},{\sigma }_{4}\}=\Bigg\{{\left({g}_{1}^{J\left(M\right)}{g}^{K\left(M\right)}\right)}^{{z}' }{\left({f}_{\mathrm{\tau }}\prod _{j\in \widehat{{w}_{\mathrm{\tau }}}}{f}_{j}\right)}^{{r}_{\mathrm{\tau }}} \cdot \\& {g}^{{a}' }{\left({f}_{\mathrm{a}}\prod _{j\in \widehat{{w}_{\mathrm{a}}}}{f}_{j}\right)}^{{r}_{a}}{\left({h}_{0}\prod _{k=1}^{l}{h}_{k}^{{b}_{{v}_{{t}_{j}}}\left[k\right]}\right)}^{s}{g}_{\eta }^{-K\left(M\right)/J\left(M\right)},\\& {g}^{s} ,{g}^{{r}_{\mathrm{a}}},{g}^{{r}_{\mathrm{\tau }}} ,{g}^{{z}' }{g}_{\eta }^{-1/J\left(M\right)}\Bigg\}, \end{split}

    此时,

    \begin{split} {\sigma }_{0}=&{g}^{{a}' }{\left({f}_{\mathrm{a}}\prod _{j\in \widehat{{w}_{\mathrm{a}}}}{f}_{j}\right)}^{{r}_{\mathrm{a}}} {\left({f}_{\mathrm{\tau }}\prod _{j\in \widehat{{w}_{\mathrm{\tau }}}}{f}_{j}\right)}^{{r}_{\mathrm{\tau }}}{\left({g}_{1}^{J\left(M\right)}{g}^{K\left(M\right)}\right)}^{{z}' }{g}_{\eta }^{-\frac{K\left(M\right)}{J\left(M\right)}}\cdot \\&\left(\prod _{k=1}^{l}{h}_{k}^{{b}_{{v}_{{t}_{j}}}\left[k\right]} {h}_{0}\right)^{s}={g}^{\alpha }{\left({f}_{\mathrm{a}}\prod _{j\in \widehat{{w}_{\mathrm{a}}}}{f}_{j}\right)}^{{r}_{\mathrm{a}}}{g}_{\eta }^{-\frac{K\left(M\right)}{J\left(M\right)}}{\left({g}_{1}^{J\left(M\right)}{g}^{K\left(M\right)}\right)}^{{z}' }\cdot \\& {\left({f}_{\mathrm{\tau }}\prod _{j\in \widehat{{w}_{\mathrm{\tau }}}}{f}_{j}\right)}^{{r}_{\mathrm{\tau }}}{\left({h}_{0}\prod _{k=1}^{l}{h}_{k}^{{b}_{{v}_{{t}_{j}}}\left[k\right]}\right)}^{s}{g}^{-{a}^{(\eta +1)}}{g}_{\eta }^{-\frac{K\left(M\right)}{J\left(M\right)}}= \\& {g}^{\alpha }{\left({f}_{\mathrm{a}}\prod _{j\in \widehat{{w}_{\mathrm{a}}}}{f}_{j}\right)}^{{r}_{\mathrm{a}}}{\left({h}_{0}\prod _{k=1}^{l}{h}_{k}^{{b}_{{v}_{{t}_{j}}}\left[k\right]}\right)}^{s}{\left({w}_{0}{\prod _{j=1}^{{n}_{m}}{w}_{j}}^{{m}_{i}}\right)}^{z} \cdot \\& {\left({f}_{\mathrm{\tau }}\prod _{j\in \widehat{{w}_{\mathrm{\tau }}}}{f}_{j}\right)}^{{r}_{\mathrm{\tau }}};\\& {\sigma }_{4}={g}^{{z}' }{g}_{\eta }^{-1/J\left(M\right)}={g}^{z} . \end{split}

    综上所述,模拟签名与原始签名有相同的分布,因此B将签名 \sigma =\left\{{\sigma }_{0},{\sigma }_{1},{\sigma }_{2},{\sigma }_{3},{\sigma }_{4}\right\} 发送给A.

    6)伪造. 询问结束后,A输出关于消息{M}^{*}= \{{m}_{1}^{*},{m}_{2}^{*},…,{m}_{{n}_{m}}^{*}\},满足签名策略 {\varGamma }_{{d}^{*},{S}^{*}}(\cdot ) 和时间片段 {t}_{{j}^{\text{'}*}} 的签名 {\sigma }^{*}=\{{\sigma }_{0}^{*},{\sigma }_{1}^{*},{\sigma }_{2}^{*},{\sigma }_{3}^{*},{\sigma }_{4}^{*},\} . 伪造过程为:选取 {w}_{\mathrm{a}}^{*}\subseteq {S}^{*} 以及 {\varOmega }^{*}\subseteq \varOmega ,令 \widehat{{w}_{\mathrm{a}}^{*}}={w}_{\mathrm{a}}^{*}\cup {\varOmega }^{*} . 要求A没有在 {t}_{{j}^{\text{'}*}} 时间片段并且满足签名策略 {\varGamma }_{{d}^{*},{S}^{*}}(\cdot ) 的条件下对{M}^{*}= \{{m}_{1}^{*},{m}_{2}^{*},…, {m}_{{n}_{m}}^{*}\}进行签名询问. 此时B检查 {t}_{{j}^{\text{'}*}}={t}_{{j}^{*}} 是否成立. 若不成立,则模拟终止;若成立,B计算 J\left({M}^{*}\right) K\left({M}^{*}\right) . 若 J\left({M}^{*}\right)\ne 0 ,模拟终止;否则A输出伪造签名{\sigma }^{*}=\left\{{\sigma }_{0}^{*},\;{\sigma }_{1}^{*},\;{\sigma }_{2}^{*},\;{\sigma }_{3}^{*},\;{\sigma }_{4}^{*}\right\}={\Bigg\{\;{g}^{\alpha }\;\left({f}_{\mathrm{a}}\displaystyle\prod\limits _{j\in \widehat{{w}_{\mathrm{a}}^{*}}}{f}_{j}\right)\;}^{{r}_{a}} \cdot{\big({g}_{1}^{J({M}^{*})} {g}^{K\left({M}^{*}\right)}\big)}^{{z}{'}} {\left( {f}_{\mathrm{\tau }}\displaystyle\prod\limits _{j\in \widehat{{w}_{\mathrm{\tau }}}}{f}_{j}\right) }^{{r}_{\mathrm{\tau }}}{\left({h}_{0}\displaystyle\prod\limits _{k=1}^{l}{h}_{k}^{{b}_{{v}_{{t}_{j}}}\left[k\right]}\right) }^{s}, {g}^{s}, {g}^{{r}_{\mathrm{a}}}, {g}^{{r}_{\mathrm{\tau }}}, {g}^{z}\Bigg\} = \Bigg\{{g}^{{a}{{'}}}{g}_{\eta +1}{g}^{{\delta }_{\mathrm{a}}{r}_{\mathrm{a}}}{g}^{{\delta }_{\mathrm{\tau }}{r}_{\mathrm{\tau }}}{g}^{\left({\theta }_{0}+\sum\limits _{k=1}^{\beta }{b}_{{t}_{{j}^{*}}}\left[k\right]{\theta }_{k}\right)s}{g}^{zK\left({M}^{*}\right)},\;{g}^{s},\;{g}^{{r}_{\mathrm{a}}},\;{g}^{{r}_{\mathrm{\tau }}},{g}^{z}\Bigg\} = \Bigg\{{g}^{{a}{{'}}}{g}_{\eta +1}{\left({\sigma }_{2}^{*}\right)}^{{\delta }_{\mathrm{a}}} {({\sigma }_{3}^{*})}^{{\delta }_{\mathrm{\tau }}} {\left({\sigma }_{1}^{*}\right)}^{{\theta }_{0}+\sum\limits _{k=1}^{\beta }{b}_{{t}_{{j}^{*}}}\left[k\right]{\theta }_{k}}{\left({\sigma }_{4}^{*}\right)}^{K\left({M}^{*}\right)}\cdot,{g}^{s},{g}^{{r}_{\mathrm{a}}},{g}^{{r}_{\mathrm{\tau }}},{g}^{z}\Bigg\}. B通过A提交的伪造签名计算{g}^{{a}_{\eta +1}}={g}_{\eta +1}= \dfrac{{\sigma }_{0}^{*}}{{g}^{{a}{{'}}}{\left({\sigma }_{1}^{*}\right)}^{{\theta }_{0}+\sum\limits _{k=1}^{\beta }{b}_{{t}_{{j}^{*}}}\left[k\right]{\theta }_{k}}{\left({\sigma }_{2}^{*}\right)}^{{\delta }_{\mathrm{a}}}{\left({\sigma }_{3}^{*}\right)}^{{\delta }_{\mathrm{\tau }}}{\left({\sigma }_{4}^{*}\right)}^{K\left({M}^{*}\right)}}. 因此若A能够伪造一个消息的有效签名,那么B就能成功解决 \eta \text{-}\mathrm{D}\mathrm{H}\mathrm{E} 困难问题. 证毕.

    为了在前向安全性游戏的交互中不发生终止,需要考虑3个事件:

    1) 事件{E}_{1}. 签名询问阶段,满足 J\left(M\right)\ne 0 ,其中 i\in \{\mathrm{1,2},… ,{q}_{\mathrm{s}}\}

    2) 事件 {E}_{2} . 伪造阶段,满足 J\left({M}^{*}\right)=0

    3) 事件 {E}_{3} . 敌手猜测的时间 {t}_{{j}'^{*}} ,满足 {t}_{{j}{'}{^*}}={t}_{{j}^{*}} .

    易见,B不发生终止的概率为\mathit{Pr}\left[\overline{abort}\right]= Pr[{\wedge }_{i=1}^{{q}_{\mathrm{s}}}{E}_{1i}\wedge {E}_{2}\wedge {E}_{3}]. 同时,对于所有的i=1,2,… ,{q}_{s},事件 {E}_{1i} 和事件 {E}_{2} 是相互独立的. 因此,\mathit{Pr}\left[\overline{abort}\right]\ge \mathit{Pr} \left[{\wedge }_{i=1}^{{q}_{\mathrm{s}}}{E}_{1i}\wedge {E}_{2}\right]\mathit{Pr}\left[{E}_{3}\right]=\mathit{Pr}\left[{E}_{3}\right]\mathit{Pr}\left[\left[{\wedge }_{i=1}^{{q}_{\mathrm{s}}}{E}_{1i}\right|{E}_{2}\right] \ \times \mathit{Pr}\left[{E}_{2}\right]\ge Pr \left[{E}_{2}\right](1-\displaystyle\sum _{i=1}^{{q}_{\mathrm{s}}}Pr[\overline{{E}_{1i}}\left|{E}_{2}\right]=\frac{1}{4T{q}_{\mathrm{s}}({n}_{m}+1)}.

    综上所述,若存在概率多项式时间敌手以不可忽略概率 \varepsilon 赢得FABSS的前向安全性游戏,那么挑战者就能以{\varepsilon }' \ge \dfrac{\varepsilon }{4T \times {q}_{\mathrm{s}} \times ({n}_{m}+1)}的概率解决\eta \text{-}\mathrm{D}\mathrm{H}\mathrm{E}困难问题假设,其中 T 表示时间片段总数, {q}_{\mathrm{s}} 表示签名询问的次数, {n}_{m} 表示消息的长度.

    定理2. FABSS方案在 \varepsilon' \text{-} (\eta \text{-} \mathrm{D}\mathrm{H}\mathrm{E}) 困难问题假设下具有 {\varepsilon} \text{-} \mathrm{不}\mathrm{变}\mathrm{性} ,其中存在常数 \psi ,满足 \varepsilon < \psi {\varepsilon}{{'}} .

    假设可净化集合 {I}_{N}\subseteq \{\mathrm{1,2},… ,{n}_{m}\} ,净化者已知秘密值集合 S I ,但无法对可净化集合范围之外的数据进行操作. 首先证明引理2.

    引理2. 若存在多项式时间的敌手 {A}_{1} 能够对可净化索引集合 {I}_{N} 中的 \kappa 位长度的消息进行操作,其中 0 < \kappa \le {n}_{m} ,并且以 {\varepsilon }_{{A}_{1}} 的优势赢得不变性游戏,那么就存在一个多项式时间敌手A在不可伪造游戏中以 {\varepsilon }_{A}\ge {\varepsilon }_{{A}_{1}} 的优势成功伪造一个长度为 {n}_{m}-\kappa 位消息的有效签名.

    证明. 假设 {A}_{1} 在可净化范围内对 \kappa 位长度的消息进行操作,此时A对长度为 {n}_{m}-\kappa 位的消息进行前向安全游戏,在游戏中A模仿挑战者与 {A}_{1} 交互. 在收到 {A}_{1} 提交的相关询问操作后,A通过与前向安全游戏中的挑战者B交互并将结果发送给 {A}_{1} .

    1)设置阶段, {A}_{1} 获得可净化索引集合 {I}_{N} ,其中 {I}_{N}\subseteq \left\{\mathrm{1,2},… ,{n}_{m}\right\} . 为简化分析,令{I}_{N}=\left\{{n}_{m}-\kappa +1, {n}_{m}- \kappa +2,… ,{n}_{m}\right\} \kappa =\left|{I}_{N}\right| . B将公共参数params=\{{G}_{1}, {G}_{2},e,g,{f}_{\mathrm{a}},{f}_{\mathrm{\tau }},{h}_{0},{w}_{0},U,\varOmega ,T,H,{W}_{{n}_{m}-\kappa },Z\}发送给A,其中 {W}_{{n}_{m}-\kappa }=\left\{{w}_{1},{w}_{2},… ,{w}_{{n}_{m}-\kappa }\right\} . A随机选取 {s}_{i}\in {\mathbb{Z}}_{p} ,计算{w}_{i}{{'}}={g}^{{s}_{i}},其中 i\in \left\{{n}_{m}-\kappa +1,{n}_{m}-\kappa +2,… ,{n}_{m}\right\} . 令W= {W}_{{n}_{m}-\kappa }\cup {W}_{{n}_{m}-\kappa +1} {W}_{{n}_{m}-\kappa +1}=\left\{{w}_{{n}_{m}-\kappa +1},{w}_{{n}_{m}-\kappa +2},… ,{w}_{{n}_{m}}\right\} . A将公共参数params=\{{G}_{1},{G}_{2},e,g,{f}_{\mathrm{a}},{f}_{\mathrm{\tau }},{h}_{0},{w}_{0},U,\varOmega ,T,H, W,Z\}发送给 {A}_{1} .

    j=\mathrm{1,2},… ,{q}_{\mathrm{s}} 次的签名询问中,A通过与B的交互来回答 {A}_{1} 的询问. 首先 {A}_{1} A询问消息{M}_{j}= \{{m}_{j,1}, {m}_{j,2},… ,{m}_{{j,n}_{m}}\}的签名,A收到询问后向B询问消息\overline{{M}_{j}}= \{{m}_{j,1},{m}_{j,2},…, {m}_{j,{n}_{m}-\kappa }\}的签名. B将签名\mathrm{\sigma }=\{{\sigma }_{j,0}, {\sigma }_{j,1}, {\sigma }_{j,2},{\sigma }_{j,3},{\sigma }_{j,4}\}发送给AA计算{\mathrm{\sigma }}_{j,0}' ={\sigma }_{j,0}\displaystyle\prod\limits _{i={n}_{m}-\kappa +1}^{{n}_{m}} {{\sigma }_{j,1}}^{{s}_{i}{m}_{j,i}} {\mathrm{\sigma }}_{j,1}' ={\sigma }_{j,1} {\mathrm{\sigma }}_{j,2}' ={\sigma }_{j,2} {\mathrm{\sigma }}_{j,3}' ={\sigma }_{j,3} {\mathrm{\sigma }}_{j,4}' ={\sigma }_{j,4} . A将签名({\mathrm{\sigma }}_{j,0}' , {\mathrm{\sigma }}_{j,1}' ,{\mathrm{\sigma }}_{j,2}' ,{\mathrm{\sigma }}_{j,3}' ,{\mathrm{\sigma }}_{j,4}' )以及秘密消息\{{{\sigma }_{j,1}}^{{s}_{i}{m}_{j,i}}|i= {n}_{m}-\kappa +1, {n}_{m}- \kappa + 2,… ,{n}_{m}\}发送给 {A}_{1} .

    2)在伪造阶段,若 {{A}}_{1} 能够成功伪造消息{M}^{*}{'}= \{{m}_{0}^{{*}{{'}}},{m}_{1}^{{*}{{'}}},… ,{m}_{{n}_{m}}^{{*}{{'}}}\}的签名 ({\mathrm{\sigma }}_{j,0}^{*}{'},{\mathrm{\sigma }}_{j,1}^{*}{'},{\mathrm{\sigma }}_{j,2}^{*}{'},{\mathrm{\sigma }}_{j,3}^{*}{'},{\mathrm{\sigma }}_{j,4}^{*}{'}) . A利用该签名进行以下计算. 对于 i=\mathrm{1,2},… ,{q}_{\mathrm{s}} \exists i\notin \{{n}_{m}- \kappa +1,{n}_{m}-\kappa +2,… ,{n}_{m}\},有 {m}_{j,i}\ne {m}_{i}^{*}{'} . 令消息{M}^{*}= \{{m}_{0}^{*},{m}_{1}^{*},…, {m}_{{n}_{m}}^{*}\},当 i\in \{\mathrm{1,2},… ,{n}_{m}-\kappa \} 时, {m}_{i}^{*}={m}_{i}^{{*}{{'}}} . A计算{\sigma }_{0}^{*}=\dfrac{{\sigma }_{0}^{*}{'}}{\displaystyle\prod\limits _{i={n}_{m}-\kappa +1}^{{n}_{m}}{{\sigma }_{j,1}}^{{s}_{i}{m}_{i}^{*}{'}}} {\sigma }_{1}^{*}={\sigma }_{1}^{*}{'} {\sigma }_{2}^{*}={\sigma }_{2}^{*}{'} {\sigma }_{3}^{*}={\sigma }_{3}^{*}{'} {\sigma }_{4}^{*}= {\sigma }_{4}^{*}{'} . A将有效签名 {\sigma }^{*}=\{{\sigma }_{0}^{*},{\sigma }_{1}^{*},{\sigma }_{2}^{*},{\sigma }_{3}^{*},{\sigma }_{4}^{*}\} 发送给B. 此时 \forall j\in \{\mathrm{1,2},… ,{q}_{\mathrm{s}}\} \exists i\in \{{n}_{m}-\kappa +1,{n}_{m}-\kappa +2,… ,{n}_{m}\} 满足 {m}_{j,i}\ne {m}_{i}^{*}{'} . 可以发现,如果 {A}_{1} 伪造的签名能够通过验证,那么 A 生成的签名也可以通过验证. 因此 A 赢得前向安全性游戏的优势 {\varepsilon}_{A} ,满足{\varepsilon}_{A}\ge {\varepsilon}_{{A}_{1}},其中{\varepsilon}_{{A}_{1}}表示 {A}_{1} 赢得不变性游戏的优势.

    由定理1可得,敌手A赢得前向安全游戏的优势是可忽略的. 因此由引理2可知,敌手 {A}_{1} 赢得不变性游戏的优势也是可忽略的. 证毕.

    FABSS方案不仅获得细粒度访问控制,缓解了密钥泄露问题,而且具有可净化性,解决了敏感信息泄露问题. 表1给出FABSS方案与文献[21,29,31,33]在匿名性、净化性、前向安全性、透明性以及访问控制方面的优势比较分析. 其中文献[33]给出了支持非单调谓词的高效属性基签名方案,提供签名者的匿名性,同时具有细粒度访问控制,但无法提供前向性和净化性. 文献[21]提出具有前向安全的属性基签名方案,在获得细粒度访问控制的同时缓解了密钥泄露问题,但无法解决敏感信息泄露问题. 文献[29]构造了具有灵活访问结构的属性基可净化签名方案,不仅提供灵活细粒度访问控制,而且还实现了敏感信息隐藏,但无法解决密钥泄露问题. 文献[31]提出可追踪的属性基可净化签名方案,提供净化功能从而实现敏感信息隐藏,同时具有恶意用户追踪功能,避免签名滥用,但无法缓解密钥泄露问题. 本文提出的FABSS方案,不仅具有细粒度访问控制,还具有前向安全性和净化性,而且缓解了密钥泄露问题并保护了敏感数据的隐私.

    表  1  方案比较
    Table  1.  Comparison of Schemes
    方案 匿名性净化性前向安全性透明性访问控制
    文献[21]
    文献[29]
    文献[31]
    文献[33]
    FABSS
    注:“√”表示方案支持该性质;“╳”表示方案不支持该性质.
    下载: 导出CSV 
    | 显示表格

    基于Ubuntu 18.4,在Charm0.5框架下实现了FABSS方案. 利用Charm库中的超奇异椭圆曲线(SS512)测试方案. 实验中群 {G}_{1} {G}_{2} 的阶为 p p 为512 b的大素数. 在此参数的计算机上测试主要密码学操作开销,经过1000次测量取平均值后,得到实验中计算双线配对所需时间为1.45 ms,在群 {G}_{1} {G}_{2} 中执行指数运算所需时间分别为1.998 ms和0.2 ms. FABSS与文献[29,31]的通信开销和计算开销比较如表2表3所示,其中 {|G}_{1}| 表示群 {G}_{1} 中元素的大小, \left|{\widehat{\omega }}_{\mathrm{a}}\right| 表示签名者属性数量, \left|{\widehat{\omega }}_{\mathrm{\tau }}\right| 表示净化者属性数量, l 表示时间二叉树层数. 由表2可知,提出的FABSS方案具有固定的签名长度,减少了通信开销. 由表3可知,提出的方案在验证阶段和净化阶段的指数和配对运算与属性数量无关,降低了计算开销. 实验结果如图3~6所示,由图3图4可知,随着用户属性数量增加,提出的方案在密钥生成和签名阶段比文献[29,31]需要更大的计算开销,但是密钥生成算法一般只执行1次,所以对方案的性能影响不大;由图5图6可知,提出的方案在净化以及验证阶段所需的计算时间要小于文献[29,31],具有较小的计算开销.

    表  2  通信开销比较
    Table  2.  Comparison of Communication Cost
    方案密钥签名净化签名
    FABSS[|{\widehat{\omega } }_{\mathrm{a} }|+\eta -1+(l+2)|{\widehat{\omega } }_{\mathrm{a} }|]{|G}_{1}|5 {|G}_{1}| 5| {G}_{1}|
    文献[29](2+|{\widehat{\omega } }_{\mathrm{a} }|){|G}_{1}| (2{|{\widehat{\omega }}_{\mathrm{a}}|}^{2}+2){|G}_{1}| (2{|{\widehat{\omega }}_{\mathrm{a}}|}^{2}+2){|G}_{1}|
    文献[31](2|{\widehat{\omega } }_{\mathrm{a} }|+2){|G}_{1}|+|{{\mathbb{Z}}}_{p}^{*}| (3|{\widehat{\omega }}_{\mathrm{a}}|+|{\widehat{\omega }}_{\mathrm{\tau }}|+3){|G}_{1}| (3|{\widehat{\omega }}_{\mathrm{a}}|+|{\widehat{\omega }}_{\mathrm{\tau }}|+3){|G}_{1}|
    注: {|G}_{1}| 表示群 {G}_{1} 中元素的大小, |{\mathbb{Z}}_{p}^{*}| 表示环 {\mathbb{Z}}_{p}^{*} 中元素的比特大小, |{\widehat{\omega }}_{\mathrm{a}}| 表示签名者属性数量, |{\widehat{\omega }}_{\mathrm{\tau }}| 表示净化者属性数量, l 表示时间二叉树层数, \eta = n + d - 1 n 是常数, d 是门限值.
    下载: 导出CSV 
    | 显示表格
    表  3  计算开销比较
    Table  3.  Comparison of Computation Cost
    方案密钥生成签名验证净化
    FABSS[(4+ \eta +l )| {\widehat{\omega }}_{\mathrm{a}} |]E[(3+l)| {\widehat{\omega }}_{\mathrm{a}} |+| {\widehat{\omega }}_{\mathrm{\tau }} |+13+ {n}_{m} ]E(l+ {n}_{m} )E+5P(8+l+ I+{n}_{m} )E
    文献[29](| {\widehat{\omega }}_{\mathrm{a}} |+1)E(3| {\widehat{\omega }}_{\mathrm{a}} + {n}_{m} +2)E(3+| {\widehat{\omega }}_{\mathrm{a}} )P+(| {\widehat{\omega }}_{\mathrm{a}} |+ {n}_{m} )E(|{\widehat{\omega } }_{\mathrm{a} }|+I+{n}_{m})E
    文献[31](3+3| {\widehat{\omega }}_{\mathrm{a}} |)E(3| {\widehat{\omega }}_{\mathrm{a}} |+2| {\widehat{\omega }}_{\mathrm{\tau }} |+l+4v+6)E(| {\widehat{\omega }}_{\mathrm{a}} |+| {\widehat{\omega }}_{\mathrm{\tau }} |+3)P+lE(| {\widehat{\omega }}_{\mathrm{a}} |+| {\widehat{\omega }}_{\mathrm{\tau }} |+|I|+l+4)E
    注: {n}_{m} 表示消息长度, I 表示可净化范围集合,E表示 {G}_{1} 中的指数运算,P表示配对运算, \left|{\widehat{\omega }}_{\mathrm{a}}\right| 表示签名者属性数量, \left|{\widehat{\omega }}_{\mathrm{\tau }}\right| 表示净化者属性数量, l 表示时间二叉树层数, \eta =n+d-1 n 是常数, d 是门限值.
    下载: 导出CSV 
    | 显示表格
    图  3  密钥生成算法性能分析
    Figure  3.  Performance analysis of key generation algorithm
    图  5  验证算法性能分析
    Figure  5.  Performance analysis of verifying algorithm
    图  4  签名算法性能分析
    Figure  4.  Performance analysis of signing algorithm
    图  6  净化算法性能分析
    Figure  6.  Performance analysis of sanitization algorithm

    本文形式化了前向安全的属性基可净化签名安全模型. 提出了一种前向安全的高效属性基可净化签名方案,不仅缓解了密钥泄露问题,而且还实现了敏感信息隐藏功能. 基于η-DHE困难问题假设,在标准模型下证明了本文方案的安全性. 通过与现有方案的对比分析可知,提出的方案更适用于电子医疗、电子政务等特殊应用场景中.

    作者贡献声明:朱留富提出初步方案、实验设计,以及论文初稿撰写和修改;李继国负责论文思路构建、理论指导、方案分析和论文修改;陆阳和张亦辰负责论文方案分析、论文润色和修改.

  • 图  1   云计算模型

    Figure  1.   Cloud computing paradigm

    图  2   边缘计算模型

    Figure  2.   Edge computing paradigm

    图  3   边缘智能的体系架构

    Figure  3.   Architecture of edge intelligence

    图  4   整体技术路线图

    Figure  4.   Overall technical route map

    图  5   边缘智能图像识别系统

    Figure  5.   Edge intelligence image recognition system

    图  6   卷积神经网络模型结构

    Figure  6.   Structure of CNN model

    表  1   云计算、边缘计算和边缘智能特点对比

    Table  1   Features Comparison of Cloud Computing, Edge Computing , and Edge Intelligence

    类别云计算边缘计算边缘智能
    架构模型集中式分布式分布式
    服务器位置互联网中边缘网络中云—边—端协同网络
    目标应用互联网应用物联网或移动应用各种智能应用程序
    服务类型全球信息服务有限的本地化信息服务低延时、高可靠的智能服务
    设备数量数百亿几千万甚至几亿数百亿甚至上千亿
    研究重点工作流调度、虚拟机管理等计算卸载、缓存、资源分配等在边缘侧利用AI实现数据收集、缓存、处理和分析
    下载: 导出CSV

    表  2   智能的边缘计算和边缘的智能化特点对比

    Table  2   Features Comparison of Intelligent Edge Computing and Edge Intelligence

    类别云/边/端智能的边缘计算边缘的智能化
    结构层面服务器集群服务器集群
    边缘基准站、边缘节点智能化服务
    终端终端设备智能化应用
    内容层面利用AI技术解决边缘计算相关问题实现边缘环境中应用的智能化
    下载: 导出CSV

    表  3   智能的边缘计算相关工作分类

    Table  3   Related Work Classification for Intelligent Edge Computing

    关键技术适用场景问题挑战优化目标相应算法数据来源
    计算卸载车联网高度动态的车辆拓扑结构.优化卸载决策和带宽/计算资源分配深度学习文献[56]
    无人机无人机与终端用户之间的
    计算和信道容量有限.
    最小化延迟和能耗深度学习文献[57]
    设备到设备卸载数据卸载过程效果不稳定.优化用户体验强化学习文献[58]
    物联网设备嵌入式设备处理能力及资源受限;降低了DNN推理的总延迟深度学习文献[59]
    设备之间的对抗性竞争;
    低延时通信约束.
    最小化延迟和通信成本深度强化学习文献[60]
    资源分配多用户资源约束条件单个边缘服务器资源受限.最小化延迟、提高系统实时性深度学习文献[61]
    移动设备边缘计算环境复杂多变.保持MEC架构在不同条件下的稳定性深度强化学习文献[46]
    车辆边缘计算网络车辆动态变化.最大化车辆边缘计算网络的长期效用深度强化学习文献[62]
    工业物联网频谱资源有限;
    电池容量受限.
    最大化长期吞吐量深度学习文献[63]
    无线网络框架节点之间达成共识的同时
    保证系统的性能.
    最大化系统吞吐量和用户的服务质量深度强化学习文献[64]
    边缘缓存边缘计算系统无线信道的拥塞.最小化系统成本消耗
    系统性能最优
    深度强化学习文献[36]
    车联网车辆移动性;最大化系统效用深度强化学习文献[65]
    动态网络拓扑;
    存储容量和带宽资源有限;
    最小化系统成本和延迟深度强化学习文献[66]
    主动缓存的时间变化性;提高模型性能预测准确率深度学习文献[67]
    车辆的高移动性.以最大限度地降低能耗深度强化学习文献[68]
    下载: 导出CSV

    表  4   OpenEI和Edgent的特点对比

    Table  4   Features Comparison of OpenEI and Edgent

    类别OpenEIEdgent
    可部署的
    硬件环境
    树莓派和集群计算机树莓派和台式机
    适用环境各种操作系统静态和动态网络
    优化目标最大化模型准确率最小化延迟
    特点易于安装、可跨平台使用超低延时、超高稳定
    性及可靠性
    功能为边缘提供智能处理和
    数据共享功能
    按需DNN协作推理
    下载: 导出CSV
  • [1]

    Cisco U. Cisco annual internet report, 2018—2023, white paper, [EB/OL]. 2020[2022-02-19]. https://www.cisco.com/c/en/us/solutions/colla teral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

    [2]

    Shepherd J, Burian S. Detection of urban-induced rainfall anomalies in a major coastal city[J]. Earth Interactions, 2003, 7(4): 1−17 doi: 10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2

    [3] 施巍松,孙辉,曹杰,等. 边缘计算:万物互联时代新型计算模型[J]. 计算机研究与发展,2017,54(5):907−924 doi: 10.7544/issn1000-1239.2017.20160941

    Shi Weisong, Sun Hui, Cao Jie, et al. Edge computing—An emerging computing model for the Internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907−924 (in Chinese) doi: 10.7544/issn1000-1239.2017.20160941

    [4]

    Patel M, Naughton B, Chan C, et al. Mobile-edge computing—Introductory technical white paper[J]. White Paper, Mobile-edge Computing Industry Initiative, 2014, 29: 854−864

    [5]

    Shi Weisong, Cao Jie, Zhang Quan, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637−646 doi: 10.1109/JIOT.2016.2579198

    [6] 施巍松,张星洲,王一帆,等. 边缘计算:现状与展望[J]. 计算机研究与发展,2019,56(1):69−89 doi: 10.7544/issn1000-1239.2019.20180760

    Shi Weisong, Zhang Xingzhou, Wang Yifan, et al. Edge computing: State-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69−89 (in Chinese) doi: 10.7544/issn1000-1239.2019.20180760

    [7]

    Wang Xiaofei, Han Yiwen, Leung V, et al. Convergence of edge computing and deep learning: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 869−904

    [8]

    Zhou Zhi, Chen Xu, Li En, et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738−1762 doi: 10.1109/JPROC.2019.2918951

    [9]

    Plastiras G, Terzi M, Kyrkou C, et al. Edge intelligence: Challenges and opportunities of near-sensor machine learning applications[C/OL] //Proc of the 29th Int Conf on Application Specific Systems, Architectures and Processors (ASAP). Piscataway, NJ: IEEE, 2018[2022-02-19]. https://ieee xplore.ieee.org/abstract/document/8445118

    [10]

    Rausch T, Dustdar S. Edge intelligence: The convergence of humans, things, and AI[C] //Proc of the 2019 IEEE Int Conf on Cloud Engineering (IC2E). Piscataway, NJ: IEEE, 2019: 86−96

    [11]

    Parekh B, Amin K. Edge intelligence: A robust reinforcement of edge computing and artificial intelligence[C] //Proc of Innovations in Information and Communication Technologies (IICT-2020). Berlin: Springer, 2021: 461−468

    [12]

    Munir A, Blasch E, Kwon J, et al. Artificial intelligence and data fusion at the edge[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(7): 62−78 doi: 10.1109/MAES.2020.3043072

    [13]

    Dillon T, Wu Chen, Chang E. Cloud computing: Issues and challenges [C] //Proc of the 24th IEEE Int Conf on Advanced Information Networking and Applications. Piscataway, NJ: IEEE, 2010: 27−33

    [14]

    Khan W, Ahmed E, Hakak S, et al. Edge computing: A survey[J]. Future Generation Computer Systems, 2019, 97: 219−235 doi: 10.1016/j.future.2019.02.050

    [15]

    Xu Dianlei, Li Tong, Li Yong, et al. Edge intelligence: Empowering intelligence to the edge of network[J]. Proceedings of the IEEE, 2021, 109(11): 1778−1837 doi: 10.1109/JPROC.2021.3119950

    [16]

    Yi Shanhe, Hao Zijiang, Qin Zhengrui, et al. Fog computing: Platform and applications[C] //Proc of the 3rd IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). Piscataway, NJ: IEEE, 2015: 73−78

    [17]

    Meng Jiaying, Tan Haisheng, Xu Chao, et al. Dedas: Online task dispatching and scheduling with bandwidth constraint in edge computing[C] //Proc of IEEE Conf on Computer Communications (INFOCOM 2019). Piscataway, NJ: IEEE, 2019: 2287−2295

    [18]

    Sun Yaping, Chen Zhiyong, Tao Meixia, et al. Bandwidth gain from mobile edge computing and caching in wireless multicast systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3992−4007 doi: 10.1109/TWC.2020.2979147

    [19]

    Xu Xiaolong, Xue Yuan, Qi Lianyong, et al. An edge computing-enabled computation offloading method with privacy preservation for Internet of connected vehicles[J]. Future Generation Computer Systems, 2019, 96: 89−100 doi: 10.1016/j.future.2019.01.012

    [20] 林永青. 人工智能起源处的“群星”[J]. 金融博览,2017(5):46−47 doi: 10.3969/j.issn.1673-4882.2017.05.021

    Lin Yongqing. "Stars" at the origin of artificial intelligence[J]. Financial View, 2017(5): 46−47 (in Chinese) doi: 10.3969/j.issn.1673-4882.2017.05.021

    [21] 崔雍浩,商聪,陈锶奇,等. 人工智能综述:AI的发展[J]. 无线电通信技术,2019,45(3):225−231 doi: 10.3969/j.issn.1003-3114.2019.03.01

    Cui Yonghao, Shang Cong, Chen Siqi, et al. Overview of artificial intelligence: The development of AI[J]. Radio Communication Technology, 2019, 45(3): 225−231 (in Chinese) doi: 10.3969/j.issn.1003-3114.2019.03.01

    [22]

    Qiu Junfei, Wu Qihui, Ding Guoru, et al. A survey of machine learning for big data processing[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 1−16 doi: 10.1186/s13634-015-0293-z

    [23]

    Adam B, Smith I. Reinforcement learning for structural control[J]. Journal of Computing in Civil Engineering, 2008, 22(2): 133−139 doi: 10.1061/(ASCE)0887-3801(2008)22:2(133)

    [24]

    Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26−38 doi: 10.1109/MSP.2017.2743240

    [25]

    LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444 doi: 10.1038/nature14539

    [26]

    Pouyanfar S, Sadiq S, Yan Yilin, et al. A survey on deep learning: Algorithms, techniques, and applications[J]. ACM Computing Surveys, 2018, 51(5): 1−36

    [27]

    McCulloch W, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115−133 doi: 10.1007/BF02478259

    [28]

    Fukushima K, Miyake S, Ito T. Neocognitron: A neural network model for a mechanism of visual pattern recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983(5): 826−834

    [29]

    Jordan M. Serial Order: A Parallel Distributed Processing Approach[M] //Advances in Psychology. Amsterdam: Elsevier, 1997: 471−495

    [30]

    Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527−1554 doi: 10.1162/neco.2006.18.7.1527

    [31]

    Jia Yangqing, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding[C] //Proc of the 22nd ACM Int Conf on Multimedia. New York: ACM, 2014: 675−678

    [32]

    Parvat A, Chavan J, Kadam S, et al. A survey of deep-learning frameworks[C/OL] //Proc of the 2017 Int Conf on Inventive Systems and Control (ICISC). Piscataway, NJ: IEEE, 2017[2022-02-19]. https://ieeexplore.ieee. org/abstract/document/8068684

    [33]

    Abadi M. TensorFlow: Learning functions at scale[C/OL] //Proc of the 21st ACM SIGPLAN Int Conf on Functional Programming. New York: ACM, 2016[2022-02-19]. https://dl.acm.org/doi/abs/10.1145/2951913.2976746

    [34]

    Qiu Chao, Wang Xiaofei, Yao Haipeng, et al. Bring intelligence among edges: A blockchain-assisted edge intelligence approach[C/OL] //Proc of IEEE Global Communications Conf (GLOBECOM 2020). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9348271

    [35]

    Babu B, Jayashree N. Edge intelligence models for industrial IoT (IIoT)[J]. RV Journal of Science Technology Engineering Arts and Management, 2020, 1: 5−17

    [36]

    Wang Xiaofei, Han Yiwen, Wang Chenyang, et al. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning[J]. IEEE Network, 2019, 33(5): 156−165 doi: 10.1109/MNET.2019.1800286

    [37]

    Wang Zhiyuan, Xu Hongli, Liu Jianchun, et al. Resource-efficient federated learning with hierarchical aggregation in edge computing[C/OL] //Proc of IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ. IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstra ct/document/9488756

    [38]

    Nguyen D, Ding Ming, Pham Q, et al. Federated learning meets blockchain in edge computing: Opportunities and challenges[J]. IEEE Internet of Things Journal, 2021, 8(1): 12806−12825

    [39]

    Deng Shuiguang, Zhao Hailiang, Fang Weijia, et al. Edge intelligence: The confluence of edge computing and artificial intelligence[J]. IEEE Internet of Things Journal, 2020, 7(8): 7457−7469 doi: 10.1109/JIOT.2020.2984887

    [40]

    Qu Guanjin, Wu Huaming, Li Ruidong, et al. DMRO: A deep meta reinforcement learning-based task offloading framework for edge-cloud computing[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 3448−3459 doi: 10.1109/TNSM.2021.3087258

    [41]

    Tang Ming, Wong V. Deep reinforcement learning for task offloading in mobile edge computing systems[J/OL]. IEEE Transactions on Mobile Computing, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/docume nt/9253665

    [42]

    Zhang Ke, Zhu Yongxu, Leng Supeng, et al. Deep learning empowered task offloading for mobile edge computing in urban informatics[J]. IEEE Internet of Things Journal, 2019, 6(5): 7635−7647 doi: 10.1109/JIOT.2019.2903191

    [43]

    Deng Xiaoheng, Yin Jian, Guan Peiyuan, et al. Intelligent delay-aware partial computing task offloading for multi-user industrial Internet of things through edge computing[J/OL]. IEEE Internet of Things Journal, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9590527

    [44]

    Wu Huaming, Zhang Ziru, Guan Chang, et al. Collaborate edge and cloud computing with distributed deep learning for smart city Internet of things[J]. IEEE Internet of Things Journal, 2020, 7(9): 8099−8110 doi: 10.1109/JIOT.2020.2996784

    [45]

    Huang Hui, Ye Qiang, Du Hongwei. Reinforcement learning based offloading for realtime applications in mobile edge computing [C/OL] //Proc of IEEE Int Conf on Communications (ICC 2020). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9148748

    [46]

    Wang Jiadai, Zhao Lei, Liu Jiajia, et al. Smart resource allocation for mobile edge computing: A deep reinforcement learning approach[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 9(3): 1529−1541

    [47]

    He Ying, Wang Yuhang, Qiu Chao, et al. Blockchain-based edge computing resource allocation in IoT: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020, 8(4): 2226−2237

    [48]

    Dai Yueyue, Zhang Ke, Maharjan S, et al. Edge intelligence for energy-efficient computation offloading and resource allocation in 5G beyond[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12175−12186 doi: 10.1109/TVT.2020.3013990

    [49]

    Lin Zehong, Bi Suzhi, Zhang Yingjun. Optimizing AI service placement and resource allocation in mobile edge intelligence systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7257−7271 doi: 10.1109/TWC.2021.3081991

    [50]

    Yu Zhengxin, Hu Jia, Min Geyong, et al. Mobility-aware proactive edge caching for connected vehicles using federated learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 5341−5351

    [51]

    Zhang Ke, Leng Supeng, He Yejun, et al. Cooperative content caching in 5G networks with mobile edge computing[J]. IEEE Wireless Communications, 2018, 25(3): 80−87 doi: 10.1109/MWC.2018.1700303

    [52]

    Ning Zhaolong, Zhang Kaiyuan, Wang Xiaojie, et al. Joint computing and caching in 5G-envisioned Internet of vehicles: A deep reinforcement learning-based traffic control system[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 5201−5212

    [53]

    Ning Zhaolong, Zhang Kaiyuan, Wang Xiaojie, et al. Intelligent edge computing in Internet of vehicles: A joint computation offloading and caching solution[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2212−2225

    [54]

    Ndikumana A, Tran N, Kim K, et al. Deep learning based caching for self-driving cars in multi-access edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(5): 2862−2877

    [55]

    Zhang Ran, Yu F, Liu Jiang, et al. Deep reinforcement learning (DRL)-based device-to-device caching with blockchain and mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6469−6485 doi: 10.1109/TWC.2020.3003454

    [56]

    Dai Penglin, Hu Kaiwen, Wu Xiao, et al. Asynchronous deep reinforcement learning for data-driven task offloading in MEC-empowered vehicular networks [C/OL] //Proc of IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/document/9488886

    [57]

    Mukherjee M, Kumar V, Lat A, et al. Distributed deep learning-based task offloading for UAV-enabled mobile edge computing[C] //Proc of IEEE Conf on Computer Communications Workshops (INFOCOM 2020). Piscataway, NJ: IEEE, 2020: 1208−1212

    [58]

    Liu Xianming, Zhang Chaokun, He Shen. Adaptive task offloading for mobile aware applications based on deep reinforcement learning[C] //Proc of the 19th Int Conf on mobile Ad Hoc and Smart Systems (MASS). Piscataway, NJ: IEEE, 2022, accepted

    [59]

    Mohammed T, Joe-Wong C, Babbar R, et al. Distributed inference acceleration with adaptive DNN partitioning and offloading [C] //Proc of the IEEE Conf on Computer Communications (INFOCOM 2020). Piscataway, NJ: IEEE, 2020: 854−863

    [60]

    Zhou Zhenyu, Wang Zhao, Yu Haijun, et al. Learning-based URLLC-aware task offloading for Internet of health things[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 396−410

    [61]

    Tang Xin, Chen Xu, Zeng Liekang, et al. Joint multiuser DNN partitioning and computational resource allocation for collaborative edge intelligence[J]. IEEE Internet of Things Journal, 2020, 8(12): 9511−9522

    [62]

    Liu Yi, Yu Huimin, Xie Shengli, et al. Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11158−11168 doi: 10.1109/TVT.2019.2935450

    [63]

    Liao Haijun, Zhou Zhenyu, Zhao Xiongwen, et al. Learning-based context-aware resource allocation for edge-computing-empowered industrial IoT[J]. IEEE Internet of Things Journal, 2019, 7(5): 4260−4277

    [64]

    Guo Fengxian, Yu F, Zhang Heli, et al. Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2019, 19(3): 1689−1703

    [65]

    Dai Yueyue, Xu Du, Maharjan S, et al. Artificial intelligence empowered edge computing and caching for Internet of vehicles[J]. IEEE Wireless Communications, 2019, 26(3): 12−18 doi: 10.1109/MWC.2019.1800411

    [66]

    Qiao Guanhua, Leng Supeng, Maharjan S, et al. Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 7(1): 247−257

    [67]

    Ale L, Zhang Ning, Wu Huici, et al. Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network[J]. IEEE Internet of Things Journal, 2019, 6(3): 5520−5530 doi: 10.1109/JIOT.2019.2903245

    [68]

    Khan L U, Yaqoob I, Tran N H, et al. Edge-computing-enabled smart cities: A comprehensive survey[J]. IEEE Internet of Things Journal, 2020, 7(10): 10200−10232 doi: 10.1109/JIOT.2020.2987070

    [69]

    Nakahara M, Hisano D, Nishimura M, et al. Retransmission edge computing system conducting adaptive image compression based on image recognition accuracy[C/OL] //Proc of the 94th IEEE Vehicular Technology Conf (VTC2021-Fall). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://iee explore.ieee.org/document/9625464

    [70]

    Muhammad G, Hossain M. Emotion recognition for cognitive edge computing using deep learning[J]. IEEE Internet of Things Journal, 2021, 8(23): 16894−16901 doi: 10.1109/JIOT.2021.3058587

    [71]

    Shen Tao, Gao Chan, Xu Dawei. The analysis of intelligent real-time image recognition technology based on mobile edge computing and deep learning[J]. Journal of Real-Time Image Processing, 2021, 18(4): 1157−1166 doi: 10.1007/s11554-020-01039-x

    [72]

    Monburinon N, Zabir S, Vechprasit N, et al. A novel hierarchical edge computing solution based on deep learning for distributed image recognition in IoT systems[C] //Proc of the 4th Int Conf on Information Technology (InCIT). Piscataway, NJ: IEEE, 2019: 294−299

    [73]

    Wu Juan. English real-time speech recognition based on hidden markov and edge computing model[C] //Proc of the 3rd Int Conf on Inventive Research in Computing Applications (ICIRCA). Piscataway, NJ: IEEE, 2021: 376−379

    [74]

    Xu Yunwei. Research on business English translation architecture based on artificial intelligence speech recognition and edge computing[J/OL]. Wireless Communications and Mobile Computing, 2021[2022-02-19]. https://www.hindawi.com/journals/wcmc/2021/5518868/

    [75]

    Cheng Shitong, Xu Zhenghui, Li Xiuhua, et al. Task Offloading for automatic speech recognition in edge-cloud computing based mobile networks[C/OL] //Proc of IEEE Symp on Computers and Communications (ISCC). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9219579

    [76]

    Zeng Xiao, Fang Biyi, Shen Haichen, et al. Distream: Scaling live video analytics with workload-adaptive distributed edge intelligence [C] //Proc of the 18th Conf on Embedded Networked Sensor Systems. New York: ACM, 2020: 409−421

    [77]

    Rocha N, Silva T, Batista T, et al. Leveraging edge intelligence for video analytics in smart city applications [J]. Information, 2021, 12(1): 14

    [78]

    Zhang Xingzhou, Wang Yifan, Lu Sidi, et al. OpenEI: An open framework for edge intelligence[C] //Proc of the 39th IEEE Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2019: 1840−1851

    [79]

    Li En, Zeng Liekang, Zhou Zhi, et al. Edge AI: On-demand accelerating deep neural network inference via edge computing[J]. IEEE Transactions on Wireless Communications, 2019, 19(1): 447−457

    [80]

    Erfanian A, Amirpour H, Tashtarian F, et al. LwTE-Live: Light-weight transcoding at the edge for live streaming[C] //Proc of the Workshop on Design, Deployment, and Evaluation of Network-assisted Video Streaming. New York: ACM, 2021: 22−28

    [81]

    Jin Yibo, Jiao Lei, Qian Zhuzhong, et al. Learning for Learning: Predictive online control of federated learning with edge provisioning [C/OL] //Proc of the IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstra ct/document/9488733

    [82]

    Zhang D, Kou Ziyi, Wang Dong. Fedsens: A federated learning approach for smart health sensing with class imbalance in resource constrained edge computing[C/OL] //Proc of the IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/document/9488776

    [83]

    Wang Shuangguang, Guo Yan, Zhang Ning, et al. Delay-aware microservice coordination in mobile edge computing: A reinforcement learning approach[J]. IEEE Transactions on Mobile Computing, 2019, 20(3): 939−951

    [84]

    Bahreini T, Badri H, Grosu D. Mechanisms for resource allocation and pricing in mobile edge computing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(3): 667−682

    [85]

    Tran T, Pompili D. Adaptive bitrate video caching and processing in mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2018, 18(9): 1965−1978

    [86]

    Xing Hong, Liu Liang, Xu Jie, et al. Joint task assignment and resource allocation for D2D-enabled mobile-edge computing[J]. IEEE Transactions on Communications, 2019, 67(6): 4193−4207 doi: 10.1109/TCOMM.2019.2903088

    [87]

    Zhang Chaokun, Zheng Rong, Cui Yong, et al. Delay-sensitive computation partitioning for mobile augmented reality applications[C/OL] //Proc of the 28th Int Symp on Quality of Service (IWQoS). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/docu ment/9212917

    [88]

    Song Fuhong, Xing Huanlai, Luo Shouxi, et al. A multiobjective computation offloading algorithm for mobile-edge computing[J]. IEEE Internet of Things Journal, 2020, 7(9): 8780−8799 doi: 10.1109/JIOT.2020.2996762

    [89]

    Lei Lei, Xu Huijuan, Xiong Xiong, et al. Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-IoT edge computing system[J]. IEEE Internet of Things Journal, 2019, 6(3): 5345−5362 doi: 10.1109/JIOT.2019.2900550

    [90]

    Littman M, Moore A. Reinforcement learning: A survey[J]. Journal of Artificial Intelligence Research, 1996, 4(1): 237−285

    [91]

    Wang Jin, Hu Jia, Min Geyong, et al. Fast adaptive task offloading in edge computing based on meta reinforcement learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(1): 242−253

    [92]

    Huisman M, Van R, Plaat A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54(6): 4483−4541 doi: 10.1007/s10462-021-10004-4

    [93]

    Zhang Ke, Cao Jiayu, Zhang Yan. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks[J]. IEEE Transactions on Industrial Informatics, 2021, 18(2): 1405−1413

    [94]

    Dai Yueyue, Xu Du, Zhang Ke, et al. Deep reinforcement learning and permissioned blockchain for content caching in vehicular edge computing and networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4312−4324 doi: 10.1109/TVT.2020.2973705

    [95]

    Liang Fan, Yu Wei, Liu Xing, et al. Toward edge-based deep learning in industrial Internet of things[J]. IEEE Internet of Things Journal, 2020, 7(5): 4329−4341 doi: 10.1109/JIOT.2019.2963635

    [96]

    Guillén M, Llanes A, Imbernón B, et al. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning[J]. The Journal of Supercomputing, 2021, 77(1): 818−840 doi: 10.1007/s11227-020-03288-w

    [97]

    Zhao Ning, Wu Hao, Yu F, et al. Deep-reinforcement-learning-based latency minimization in edge intelligence over vehicular networks[J]. IEEE Internet of Things Journal, 2021, 9(2): 1300−1312

    [98]

    Li Bo, He Qiang, Chen Feifei, et al. Inspecting edge data integrity with aggregated signature in distributed edge computing environment [J/OL]. IEEE Transactions on Cloud Computing, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9354962

    [99]

    Li Yannan, Yu Yong, Susilo W, et al. Security and privacy for edge intelligence in 5G and beyond networks: Challenges and solutions[J]. IEEE Wireless Communications, 2021, 28(2): 63−69 doi: 10.1109/MWC.001.2000318

    [100]

    Li Bo, He Qiang, Chen Feifei, et al. Auditing cache data integrity in the edge computing environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(5): 1210−1223

    [101]

    Cui Guangming, He Qiang, Li Bo, et al. Efficient verification of edge data integrity in edge computing environment [J/OL]. IEEE Transactions on Services Computing, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract /document/9459478

    [102]

    Li Bo, He Qiang, Chen Feifei, et al. Cooperative assurance of cache data integrity for mobile edge computing[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4648−4662 doi: 10.1109/TIFS.2021.3111747

    [103]

    Tong Wei, Jiang Bingbing, Xu Fengyuan, et al. Privacy-preserving data integrity verification in mobile edge computing [C] //Proc of the 39th Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2019: 1007−1018

    [104]

    Xu Rongxu, Hang Lei, Jin Wenquan, et al. Distributed secure edge computing architecture based on blockchain for real-time data integrity in IoT environments[J]. Actuators, 2021, 10(8): 197−212 doi: 10.3390/act10080197

    [105]

    Shanthamallu U, Thiagarajan J, Spanias A. Uncertainty-matching graph neural networks to defend against poisoning attacks [C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021, 9524−9532

    [106]

    Alfeld S, Zhu Xiaojin, Barford P. Data poisoning attacks against autoregressive models [C/OL] //Proc of the 30th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2016[2022-02-19]. https://ojs.aaai.org/index.php/AA AI/article/view/10237

    [107]

    Jagielski M, Oprea A, Biggio B, et al. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning [C] //Proc of the 2018 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2018: 19−35

    [108]

    Steinhardt J, Koh P, Liang P. Certified defenses for data poisoning attacks [J/OL]. Advances in Neural Information Processing Systems, 2017[2022-02-19]. https://proceedings.neurips.cc/paper/2017/hash/9d7311ba459f9e45ed746755a32dcd11-Abstract.html

    [109]

    Tolpegin V, Truex S, Gursoy M, et al. Data poisoning attacks against federated learning systems[C] //Proc of the European Symp on Research in Computer Security. Berlin: Springer, 2020: 480−501

    [110]

    Douceur J. The sybil attack[C] //Proc of the Int Workshop on Peer-to-Peer Systems. Berlin: Springer, 2002: 251−260

    [111]

    Doku R, Rawat D. Mitigating data poisoning attacks on a federated learning-edge computing network[C/OL] //Proc of the 18th Annual Consumer Communications & Networking Conf (CCNC). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9369581

    [112]

    Xiao Liang, Wan Xiaoyue, Dai Canhuang, et al. Security in mobile edge caching with reinforcement learning[J]. IEEE Wireless Communications, 2018, 25(3): 116−122 doi: 10.1109/MWC.2018.1700291

    [113]

    Jia Xiaoying, He Debiao, Kumar N, et al. A provably secure and efficient identity-based anonymous authentication scheme for mobile edge computing[J]. IEEE Systems Journal, 2019, 14(1): 560−571

    [114]

    Kaur K, Garg S, Kaddoum G, et al. A lightweight and privacy-preserving authentication protocol for mobile edge computing [C/OL] //Proc of IEEE Global Communications Conf (GLOBECOM 2019). Piscataway, NJ: IEEE, 2019[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9013856

    [115]

    Gupta R, Reebadiya D, Tanwar S, et al. When blockchain meets edge intelligence: Trusted and security solutions for consumers[J]. IEEE Network, 2021, 35(5): 272−278 doi: 10.1109/MNET.001.2000735

    [116]

    Ding Jiahao, Liang Guannan, Bi Jinbo, et al. Differentially private and communication efficient collaborative learning [C/OL] //Proc of the 35th AAAI Conf on Artificial Intelligence, Virtual Conf. Palo Alto, CA: AAAI, 2021[2022-02-19]. https://ojs.aaai.org/index.php/AAAI/article/view/16887

    [117]

    Wang Ji, Bao Weidong, Sun Lichao, et al. Private model compression via knowledge distillation [C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 1190−1197

    [118]

    Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential privacy [C] //Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security (CCS’16). New York: ACM, 2016: 308−318

    [119]

    Li He, Ota K, Dong Miaoxiong. Learning IoT in edge: Deep learning for the Internet of things with edge computing[J]. IEEE network, 2018, 32(1): 96−101

    [120]

    Yang Qiang, Liu Yang, Cheng Yong, et al. Federated learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2019, 13(3): 1−207 doi: 10.1007/978-3-031-01585-4

    [121]

    Liu Yi, Zhao Ruihui, Kang Jiawen, et al. Towards communication-efficient and attack-resistant federated edge learning for industrial internet of things[J]. ACM Transactions on Internet Technology, 2021, 22(3): 1−22

    [122]

    Liu Yi, James J, Kang Jiawen, et al. Privacy-preserving traffic flow prediction: A federated learning approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7751−7763 doi: 10.1109/JIOT.2020.2991401

    [123]

    Liu Yi, Yuan Xingliang, Xiong Zehui, et al. Federated learning for 6G communications: Challenges, methods, and future directions[J]. China Communications, 2020, 17(9): 105−118 doi: 10.23919/JCC.2020.09.009

    [124]

    Li Tian, Sahu A, Talwalkar A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50−60 doi: 10.1109/MSP.2020.2975749

    [125]

    Thalluri L, Venkat S, Prasad C, et al. Artificial intelligence enabled smart city IoT system using edge computing [C] //Proc of the 2nd Int Conf on Smart Electronics and Communication (ICOSEC). Piscataway, NJ: IEEE, 2021: 12−20

    [126]

    Nasir M, Muhammad K, Ullah A, et al. Enabling automation and edge intelligence over resource constraint IoT devices for smart home [J/OL]. Neurocomputing, 2021[2022-02-19]. https://www.sciencedirect.com/scienc e/article/abs/pii/S0925231221016301

    [127]

    Sadiku M, Tembely M, Musa S. Internet of vehicles: An introduction [J]. Internet Journal of Advanced Research in Computer Science and Software Engineering, 2018, 8(1): 11

    [128]

    Grover H, Alladi T, Chamola V, et al. Edge computing and deep learning enabled secure multitier network for Internet of vehicles[J]. IEEE Internet of Things Journal, 2021, 8(19): 14787−14796 doi: 10.1109/JIOT.2021.3071362

    [129]

    Zhang Qingyang, Wang Yifan, Zhang Xingzhou, et al. OpenVDAP: An open vehicular data analytics platform for CAVs[C] //Proc of the 38th IEEE Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2018: 1310−1320

    [130]

    Lv Zhihan, Chen Dongliang, Wang Qingjun. Diversified technologies in Internet of vehicles under intelligent edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2048−2059

    [131]

    Li Tailai, Zhang Chaokun, Zhou Xiaobo. BP-CODS: Blind-spot-prediction-assisted multi-vehicle collaborative data scheduling [C/OL] //Proc of the 17th Int Conf on Wireless Algorithms, Systems, and Applications (WASA 2022). Berlin: Springer, 2022[2022-02-19]. https://link.springer.com/chapter/10.1007/978-3-031-19211-1_25

    [132]

    Liu Jia, Xiang Jianjian, Jin Yongjun, et al. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey [J]. Remote Sensing, 2021, 13(21): 4387

    [133]

    Tyagi A. Towards a second green revolution[J]. Irrigation and Drainage, 2016, 4(65): 388−389

    [134]

    Kamilaris A, Prenafeta-Boldú F. Deep learning in agriculture: A survey[J]. Computers and electronics in agriculture, 2018, 147: 70−90 doi: 10.1016/j.compag.2018.02.016

    [135]

    Dionisio J, William G, Gilbert R. 3D virtual worlds and the metaverse: Current status and future possibilities[J]. ACM Computing Surveys, 2013, 45(3): 1−38

    [136]

    Duan Haihan, Li Jiaye, Fan Sizheng, et al. Metaverse for social good: A university campus prototype [C] //Proc of the 29th ACM Int Conf on Multimedia. New York: ACM, 2021: 153−161

    [137]

    Zhang Zhengquan, Xiao Yue, Ma Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28−41 doi: 10.1109/MVT.2019.2921208

    [138]

    You Xiaohu, Wang Chengxiang, Huang Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 1−74

    [139]

    Dai Hongning, Wu Yulei, Wang Hao, et al. Blockchain-empowered edge intelligence for Internet of medical things against COVID-19[J]. IEEE Internet of Things Magazine, 2021, 4(2): 34−39 doi: 10.1109/IOTM.0011.2100030

    [140]

    Han Tao, Ansari N. On optimizing green energy utilization for cellular networks with hybrid energy supplies[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 3872−3882 doi: 10.1109/TCOMM.2013.051313.121249

    [141]

    Quan Li, Huang Qin, Zhang Shengli, et al. Downsampling blockchain algorithm[C] //Proc of the IEEE Conf on Computer Communications Workshops (INFOCOM WKSHPS 2019). Piscataway, NJ: IEEE, 2019: 342−347

  • 期刊类型引用(1)

    1. 孔燕燕,江明明,闫一然,葛徽. 格上高效的支持多属性机构属性签名方案. 淮北师范大学学报(自然科学版). 2025(01): 56-61 . 百度学术

    其他类型引用(3)

图(6)  /  表(4)
计量
  • 文章访问数:  971
  • HTML全文浏览量:  132
  • PDF下载量:  456
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2023-02-26
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2023-11-30

目录

/

返回文章
返回