• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于SRAM和NVM的存内计算技术综述

张章, 施刚, 王启帆, 马永波, 刘钢, 钱利波

张章, 施刚, 王启帆, 马永波, 刘钢, 钱利波. 基于SRAM和NVM的存内计算技术综述[J]. 计算机研究与发展, 2024, 61(12): 2937-2951. DOI: 10.7544/issn1000-1239.202330364
引用本文: 张章, 施刚, 王启帆, 马永波, 刘钢, 钱利波. 基于SRAM和NVM的存内计算技术综述[J]. 计算机研究与发展, 2024, 61(12): 2937-2951. DOI: 10.7544/issn1000-1239.202330364
Zhang Zhang, Shi Gang, Wang Qifan, Ma Yongbo, Liu Gang, Qian Libo. Survey of In-Memory Computing Technology Based on SRAM and Non-Volatile Memory[J]. Journal of Computer Research and Development, 2024, 61(12): 2937-2951. DOI: 10.7544/issn1000-1239.202330364
Citation: Zhang Zhang, Shi Gang, Wang Qifan, Ma Yongbo, Liu Gang, Qian Libo. Survey of In-Memory Computing Technology Based on SRAM and Non-Volatile Memory[J]. Journal of Computer Research and Development, 2024, 61(12): 2937-2951. DOI: 10.7544/issn1000-1239.202330364
张章, 施刚, 王启帆, 马永波, 刘钢, 钱利波. 基于SRAM和NVM的存内计算技术综述[J]. 计算机研究与发展, 2024, 61(12): 2937-2951. CSTR: 32373.14.issn1000-1239.202330364
引用本文: 张章, 施刚, 王启帆, 马永波, 刘钢, 钱利波. 基于SRAM和NVM的存内计算技术综述[J]. 计算机研究与发展, 2024, 61(12): 2937-2951. CSTR: 32373.14.issn1000-1239.202330364
Zhang Zhang, Shi Gang, Wang Qifan, Ma Yongbo, Liu Gang, Qian Libo. Survey of In-Memory Computing Technology Based on SRAM and Non-Volatile Memory[J]. Journal of Computer Research and Development, 2024, 61(12): 2937-2951. CSTR: 32373.14.issn1000-1239.202330364
Citation: Zhang Zhang, Shi Gang, Wang Qifan, Ma Yongbo, Liu Gang, Qian Libo. Survey of In-Memory Computing Technology Based on SRAM and Non-Volatile Memory[J]. Journal of Computer Research and Development, 2024, 61(12): 2937-2951. CSTR: 32373.14.issn1000-1239.202330364

基于SRAM和NVM的存内计算技术综述

基金项目: 国家自然科学基金项目(U19A2053,62111540271);浙江省自然科学基金项目(LDT23F04022F04)
详细信息
    作者简介:

    张章: 1982年生. 博士,教授. CCF高级会员. 主要研究方向为AI神经形态芯片、感存算一体、深度学习

    施刚: 1999年生. 硕士研究生. 主要研究方向为深度学习、存算一体化

    王启帆: 1999年生. 硕士研究生. 主要研究方向为深度学习、存算一体化

    马永波: 1999年生. 硕士研究生. 主要研究方向为深度学习、存算一体化

    刘钢: 1982年生. 博士,教授. 国家优秀青年基金获得者. 主要研究方向为有机光电信息功能材料和器件

    钱利波: 1984年生. 博士,教授. 国家优秀青年基金获得者,华山学者特聘教授. 主要研究方向为高效功率管理集成电路、高效俘能接口集成电路与微能源系统

    通讯作者:

    刘钢(gang.liu@sjtu.edu.cn

  • 中图分类号: TP391

Survey of In-Memory Computing Technology Based on SRAM and Non-Volatile Memory

Funds: This work was supported by the National Natural Science Foundation of China (U19A2053,62111540271) and the Zhejiang Provincial Natural Science Foundation of China (LDT23F04022F04).
More Information
    Author Bio:

    Zhang Zhang: born in 1982. PhD, professor. Senior member of CCF. His main research interests include AI neural morphology chip, sensory memory computing integration and deep learning

    Shi Gang: born in 1999. Master candidate. His main research interests include deep learning and integration of storage and calculation

    Wang Qifan: born in 1999. Master candidate. His main research interests include deep learning and integration of storage and calculation

    Ma Yongbo: born in 1999. Master candidate. His main research interests include deep learning, and integration of storage and calculation

    Liu Gang: born in 1982. PhD, professor. The national science fund for excellent young scholars. His main research interest includes organic optoelec-tronic information functional materials and devices

    Qian Libo: born in 1984. PhD, professor. The national science fund for excellent young scholars, distinguished professor of Huashan scholars. His main research interests include high efficiency power management IC, and high efficiency energy capture interface IC and micro energy system

  • 摘要:

    集存储与计算于一身的快速低功耗存内计算架构,突破了存储与计算分离的传统冯·诺依曼体系,解决了限制处理器算力的“内存墙”问题,成为新型计算架构的研究热点. 存内计算的基础器件包括高速且工艺成熟的静态随机存取存储器(static RAM,SRAM)、低功耗高响应且非易失的忆阻器(memristor)、高密度低静态功耗非易失的磁性随机存取存储器(magnetic RAM,MRAM). 研究者们基于上述器件完成大量存内计算研究,但是关于这些存内计算架构全面且系统总结的文献综述仍然缺失. 首先从SRAM、忆阻器、MRAM方向出发概述了不同器件的存内计算原理、当前存内计算架构发展状况和实际应用场景等. 然后针对当前存内计算架构存在的各种问题和挑战给出了现有解决方案和未来解决方向. 最后对基于以上器件的存内计算研究重点进行了总结并概述了目前的研究短板、展望未来的发展方向.

    Abstract:

    The fast and low-power in-memory computing architecture, which integrates memory and calculation, breaks through the traditional von-Neumann system that separates memory and calculation, and solves the problem of “memory wall” that limits the arithmetic power of the processor, which has become a research hotspot of new computing architecture. The basic devices for in-memory computing include fast and mature static random access memory (SRAM), low power, fast response and non-volatile memristor, and high density, low static power and non-volatile magnetic random access memory (MRAM). Up to the present, a great variety of in-memory computing studies have been proposed based on these devices, however, a systematic and comprehensive literature review on these in-memory computing architectures is still missing. In this paper, we firstly introduce the in-memory computing principles of different devices, the current development status of in-memory computing architectures, and the practical application scenarios from the three directions of SRAM, memristor, and MRAM. Next, the existing solutions and the future directions for the problems and challenges of current in-memory computing architectures are given. Finally, we summarize the research focus of in-memory computing based on the above devices, outline the shortcomings of the current research, and look forward to the future development direction.

  • 图  1   基于SRAM的存内逻辑操作原理

    Figure  1.   Principles of SRAM-based in-memory logic operations

    图  2   8T SRAM的布尔运算

    Figure  2.   Boolean operation of 8T SRAM

    图  3   并行计算的SRAM阵列

    Figure  3.   SRAM array for parallel computing

    图  4   基于10T SRAM的DNN推理框架

    Figure  4.   10T SRAM based DNN inference framework

    图  5   忆阻器存内逻辑计算原理

    Figure  5.   Calculation principle of in-memory logic of memristor

    图  6   V/R-R架构及其逻辑异或操作真值表

    Figure  6.   V/R-R architecture and its truth table of logic XOR operation

    图  7   常见的用于神经网络加速的忆阻器阵列

    Figure  7.   Common memristor array applied for neural network acceleration

    图  8   基于忆阻器的硬件神经网络

    Figure  8.   Hardware neural network based on memristor

    图  9   STT-MRAM的示意图

    Figure  9.   Schematic diagram of STT-MRAM

    图  10   近年3款MRAM芯片

    Figure  10.   Three MRAM chips in recent years

    图  11   8层堆叠SRAM

    Figure  11.   Eight-layer stack SRAM

    图  12   3维忆阻器存算芯片

    Figure  12.   3D memristor memory chip

    表  1   几种常用存储器的性能对比

    Table  1   Performance Comparison of Several Popular Memories

    参数 SRAM 忆阻器 MRAM DRAM 闪存
    尺寸/F2 120~200 4~10 6~50 6~10 4~6
    读延迟/ns 1~8 10 5~10 10~60 2.5×104
    写延迟/ns 8 10 12 10~60 2×105
    易失性
    耐久性次数 >1015 1011 >1015 >1015 104~105
    下载: 导出CSV

    表  2   乘法真值表

    Table  2   Multiplication Truth Table

    V W V×W
    −1 −1 1
    −1 1 −1
    1 −1 −1
    1 1 1
    下载: 导出CSV

    表  3   实质蕴含逻辑真值表

    Table  3   Truth Table of IMP

    M1M2输出
    001
    011
    100
    111
    下载: 导出CSV

    表  4   基于忆阻器的硬件系统对比

    Table  4   Comparison of Memristor-Based Hardware Systems

    来源 年份 阵列尺寸 权重位数/b 工艺/nm 速度/GOPS
    文献[61] 2019 1024×512 8 22 34
    文献[62] 2021 256×512 3 55 10
    文献[64] 2023 2048 4 130 81.92
    文献[65] 2021 48×256×256 4 130 754
    下载: 导出CSV

    表  5   几款MRAM芯片对比

    Table  5   Comparison of Several MRAM Chips

    来源 年份 阵列 工艺/nm 权重位数/b 能效/(TOPS·W–1)
    文献[82] 2021 64×64 28 1 262~405
    文献[83] 2021 4 MB 22 2/4/8 25.1~960.2
    文献[84] 2022 128×512 28 1 17.8
    下载: 导出CSV
  • [1]

    Patterson D, Anderson T, Cardwell N, et al. A case for intelligent ram[J]. IEEE Micro, 1997, 17(2): 34−44 doi: 10.1109/40.592312

    [2]

    Wolf M. The Physics of Computing [M]. Amsterdam: Elsevier, 2016: 1−265

    [3]

    Tu Fengbin, Wang Yiqi, Wu Zihan, et al. ReDCIM: Reconfigurable digital computing-in-memory professor with unified FP/INT pipeline for cloud AI acceleration[J]. IEEE Journal of Solid-State Circuits, 2023, 58(1): 243−255 doi: 10.1109/JSSC.2022.3222059

    [4]

    Ali M F, Jaiswal A, Roy K. In-memory low-cost bit-serial addition using commodity DRAM technology[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(1): 155−165 doi: 10.1109/TCSI.2019.2945617

    [5]

    Sudarshan C, Said H M, Weis C, et al. Optimization of DRAM based PIM architecture for energy-efficient deep neural network training[C]//Proc of the 35th IEEE Int Symp on Circuits and Systems (ISCAS). Piscataway, NJ: IEEE, 2022: 1472−1476

    [6]

    Ali M, Roy S, Saxena U, et al. Compute-in-memory technologies and architectures for deep learning work-loads[J]. IEEE Transactions on Very Large Scale Integration Systems, 2022, 30(11): 1615−1630 doi: 10.1109/TVLSI.2022.3203583

    [7]

    Verma N, Jia Hongyang, Valavi H, et al. In-memory computing: Advances and prospects[J]. IEEE Solid-State Circuits Magazine, 2019, 11(3): 43−55 doi: 10.1109/MSSC.2019.2922889

    [8]

    Chua L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507−519 doi: 10.1109/TCT.1971.1083337

    [9]

    Duan Shukai, Hu Xiaofang, Dong Zhekang, et al. Memristor-based cellular nonlinear/neural network: Design, analysis, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(6): 1202−1213 doi: 10.1109/TNNLS.2014.2334701

    [10]

    Yang Xiaoxuan, Taylor B, Wu Ailong, et al. Research progress on memristor: From synapses to computing systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(5): 1845−1857 doi: 10.1109/TCSI.2022.3159153

    [11]

    Seo Y, Roy K. High-density SOT-MRAM based on shared bitline structure[J]. IEEE Transactions on Very Large Scale Integration Systems, 2018, 26(8): 1600−1603 doi: 10.1109/TVLSI.2018.2822841

    [12]

    Nejat A, Ouattara F, Mohammadinodoushan M, et al. Practical experiments to evaluate quality metrics of MRAM-based physical unclonable functions[J]. IEEE Access, 2020, 8: 176042−176049 doi: 10.1109/ACCESS.2020.3024598

    [13]

    Chang T C, Chang K C, Tsai T M, et al. Resistance random access memory[J]. Materials Today, 2016, 19(5): 254−264 doi: 10.1016/j.mattod.2015.11.009

    [14]

    Jeloka S, Akesh N B, Sylvester D, et al. A 28 nm configurable memory (TCAM/BCAM/ SRAM) using push-rule 6T bit cell enabling logic-in-memory[J]. IEEE Journal of Solid-State Circuits, 2016, 51(4): 1009−1021 doi: 10.1109/JSSC.2016.2515510

    [15]

    Yueh W, Chatterjee S, Zia M, et al. A memory-based logic block with optimized-for-read SRAM for energy-efficient reconfigurable computing fabric[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(6): 593−597

    [16]

    Kang K, Jeong H, Yang Y, et al. Full-swing local bitline SRAM architecture based on the 22 nm FinFET technology for low-voltage operation[J]. IEEE Transactions on Very Large Scale Integration Systems, 2016, 24(4): 1342−1350 doi: 10.1109/TVLSI.2015.2450500

    [17]

    Jaiswal A, Agrawal A, Ali M F, et al. I-SRAM: Interleaved wordlines for vector Boolean operations using SRAMs[J]. IEEE Transactions on Circuits and Systems I, 2020, 67(12): 4651−4659 doi: 10.1109/TCSI.2020.3005783

    [18]

    Aga S, Jeloka S, Subramaniyan A, et al. Compute caches[C]//Proc of the 23rd IEEE Int Symp on High Performance Computer Architecture (HPCA). Los Alamitos, CA: IEEE Computer Society, 2017: 481−492

    [19]

    Dong Qing, Jeloka S, Saligane M, et al. A 4+2T SRAM for searching and in-memory computing with 0.3V VDDmin[J]. IEEE Journal of Solid-State Circuits, 2017, 53(4): 1006−1015

    [20]

    Lin Zhiting, Li Luanyun, Wu Xiulong, et al. Half-select disturb-free 10T tunnel FET SRAM cell with improved noise margin and low power consumption[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(7): 2628−2632

    [21]

    Agrawal A, Jaiswal A, Lee C, et al. X-SRAM: Enabling in-memory Boolean computations in CMOS static random access memories[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(12): 4219−4232 doi: 10.1109/TCSI.2018.2848999

    [22]

    Rajput A K, Pattanaik M. Implementation of Boolean and arithmetic functions with 8T SRAM cell for in-memory computation[C/OL]//Proc of the 1st Int Conf for Emerging Technology (INCET). Piscataway, NJ: IEEE, 2020[2023-01-02]. https://ieeexplore.ieee.org/document/9154137

    [23]

    Chen Jian, Zhao Wenfeng, Wang Yuqi, et al. A reliable 8T SRAM for high-speed searching and logic-in-memory operations[J]. IEEE Transactions on Very Large Scale Integration Systems, 2022, 30(6): 769−780 doi: 10.1109/TVLSI.2022.3164756

    [24]

    Chaturvedi M, Garg M, Rawat B, et al. A read stability enhanced, temperature tolerant 8T SRAM cell[C/OL]//Proc of the 1st Int Conf on Simulation, Automation & Smart Manu-facturing (SASM). Piscataway, NJ: IEEE, 2021[2023 -01-02]. https://ieeexplore.ieee.org/document/9841199

    [25]

    Wen Liang, Cheng Xu, Zhou Keji, et al. Bit-interleaving-enabled 8T SRAM with shared data-aware write and reference-based sense amplifier[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(7): 643−647

    [26]

    Yu C, Yoo T, Chai K T C, et al. A 65 nm 8T SRAM compute-in-memory macro with column ADCs for Professing neural networks[J]. IEEE Journal of Solid-State Circuits, 2022, 57(11): 3466−3476 doi: 10.1109/JSSC.2022.3162602

    [27]

    Agrawal A, Kosta A, Kodge S, et al. CASH-RAM: Enabling in-memory computations for edge inference using charge accumulation and sharing in standard 8T-SRAM arrays[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(3): 295−305 doi: 10.1109/JETCAS.2020.3014250

    [28]

    Rastegari M, Ordonez V, Redmon J, et al. XNOR-net: ImageNet classification using binary convolutional neural networks[C]//Proc of the 14th European Conf on Computer Vision. Berlin: Springer, 2016: 525−542

    [29]

    Agrawal A, Jaiswal A, Roy D, et al. Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(8): 3064−3076 doi: 10.1109/TCSI.2019.2907488

    [30]

    Raman S R S, Nibhanupudi S S T, Kulkarni J P. Enabling in-memory computations in non-volatile SRAM designs[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12(2): 557−568 doi: 10.1109/JETCAS.2022.3174148

    [31]

    Lee E, Han T, Seo D, et al. A charge-domain scalable-weight in-memory computing macro with dual-SRAM architecture for precision-scalable DNN accelerators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(8): 3305−3316 doi: 10.1109/TCSI.2021.3080042

    [32]

    Jiang Hongwu, Liu Rui, Yu Shimeng. 8T XNOR-SRAM based parallel compute-in-memory for deep neural network accelerator[C]//Proc of the 63rd Int Midwest Symp on Circuits and Systems (MWSCAS). Piscataway, NJ: IEEE, 2020: 257−260

    [33]

    Si Xin, Khwa W S, Chen J J, et al. A dual-split 6T SRAM-based computing-in-memory unit-macro with fully parallel product-sum operation for binarized DNN edge professors[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(11): 4172−4185 doi: 10.1109/TCSI.2019.2928043

    [34]

    Nguyen V T, Kim J S, Lee J W. 10T SRAM computing-in-memory macros for binary and multibit MAC operation of DNN edge Professors[J]. IEEE Access, 2021, 9: 71262−71276 doi: 10.1109/ACCESS.2021.3079425

    [35]

    Su J W, Si Xin, Chou Y C, et al. Two-way transpose multibit 6T SRAM computing-in-memory macro for inference- training AI Edge chips[J]. IEEE Journal of Solid-State Circuits, 2022, 57(2): 609−624 doi: 10.1109/JSSC.2021.3108344

    [36]

    Han J, Heo J, Kim J, et al. Design of professing-in-memory with triple computational path and sparsity handling for energy-efficient DNN training[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12(2): 354−366 doi: 10.1109/JETCAS.2022.3168852

    [37]

    Nasrin S, Badawi D, Cetin A E, et al. MF-net: Compute-in-memory SRAM for multibit precision inference using memory-immersed data conversion and multiplication-free operators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(5): 1966−1978 doi: 10.1109/TCSI.2021.3064033

    [38]

    Iqbal B, Grover A, Rawat H. A profess and data variations tolerant capacitive coupled 10T1C SRAM for in-memory compute (IMC) in deep neural network accelerators[C]//Proc of the 4th Int Conf on Artificial Intelligence Circuits and Systems (AICAS). Piscataway, NJ: IEEE, 2022: 459−462

    [39]

    Yan Bonan, Hsu J L, Yu P C, et al. A 1.041-Mb/mm2 27.38-TOPS/W signed-INT8 dynamic-logic-based ADC-less SRAM compute-in-memory macro in 28nm with recon-figurable bitwise operation for AI and embedded applications[C]//Proc of the 68th IEEE Int Solid-State Circuits Conf (ISSCC). Piscataway, NJ: IEEE, 2022: 188−190

    [40]

    Choi E, Choi I, Jeon C, et al. A 133.6TOPS/W compute-in-memory SRAM macro with fully parallel one-step multi-bit computation[C/OL]//Proc of the 43rd IEEE Custom Integrated Circuits Conf (CICC). Piscataway, NJ: IEEE, 2022[2023-01-02]. https://ieeexplore.ieee.org/document/ 9772821

    [41]

    Borghetti j, Snider G S, Kuekes P J, et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication[J]. Nature, 2010, 464(7290): 873−876 doi: 10.1038/nature08940

    [42]

    Kvatinsky S, Belousov D, Liman S, et al. Magic—memrist-or-aided logic[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(11): 895−899

    [43]

    Jang B C, Nam Y, Koo B J, et al. Memristive logic-in-memory integrated circuits for energy-efficient flexible electronics[J]. Advanced Functional Materials, 2018, 28(2): 1704725 doi: 10.1002/adfm.201704725

    [44]

    Gupta S, Imani M, Rosing T. FELIX: Fast and energy-efficient logic in memory[C/OL]//Proc of the 31st IEEE/ACM Int Conf on Computer-Aided Design (ICCAD). Piscataway, NJ: IEEE, 2018[2023-01-02].https://ieeexplore. ieee.org/document/8587724

    [45]

    Xu Xiaoyan, Cui Xiaole, Luo Mengying, et al. Design of hybrid memristor-MOS XOR and XNOR logic gates[C/OL]//Proc of the 13th Int Conf on Electron Devices and Solid-State Circuits (EDSSC). Piscataway, NJ: IEEE, 2017[2023-01-02]. https://ieeexplore.ieee.org/document/8126414

    [46]

    Liu Gongzhi, Zheng Lijing, Wang Guangyi, et al. A carry lookahead adder based on hybrid CMOS-memristor logic circuit[J]. IEEE Access, 2019, 7: 43691−43696 doi: 10.1109/ACCESS.2019.2907976

    [47]

    Teimoory M, Amirsoleimani A, Ahmadi A, et al. A hybrid memristor-CMOS multiplier design based on memristive universal logic gates[C]//Proc of the 60th Int Mid-west Symp on Circuits and Systems (MWSCAS). Piscataway, NJ: IEEE, 2017: 1422−1425

    [48]

    Rohani S G, Nejad N T, Radakovits D. A semiparallel full-adder in imply logic[J] IEEE Transactions on Very Large Scale Integration Systems, 2020, 28(1): 297−301

    [49]

    Ali A, Ben-Hur R, Wald N, et al. Efficient algorithms for in-memory fixed point multiplication using MAGIC [C/OL]//Proc of the 31st IEEE Int Symp on Circuits and Systems (ISCAS). Piscataway, NJ: IEEE, 2018[2023-01-02]. https://ieeexplore.ieee.org/document/ 8351561

    [50]

    Li Zhiwei, Zhu Xi, Li Nan, et al. SCMOS: Series-connected memristor-only stateful logic[C/OL]//Proc of the 15th IEEE Int Conf on Solid-State & Integrated Circuit Technology (ICSICT). Piscataway, NJ: IEEE, 2020[2023-01-02]. https://ieeexplore.ieee.org/document/9278249

    [51]

    Song Yujie, Wang Xingsheng, Wu Qiwen, et al. Reconfigurable and efficient implementation of 16 Boolean logics and full-adder functions with memristor crossbar for beyond von Neumann in-memory computing[J]. Advanced Science, 2022, 9(15): 2200036 doi: 10.1002/advs.202200036

    [52]

    Pandey N, Verma S, Jeph S, et al. Design of a digital magnitude comparator based on memristor logic circuit[C]//Proc of the 1st Int Mobile and Embedded Technology Conf (MECON). Piscataway, NJ: IEEE, 2022: 430−434

    [53]

    Paramasivam K, Nithya N, Nepolean A. A novel hybrid CMOS-memristor based 2-bit magnitude comparator using memristor ratioed logic universal gate for low power applications[C/OL]//Proc of the 1st Int Conf on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA). Piscataway, NJ: IEEE, 2021[2023-01-02]. https://ieeexplore.ieee.org/docu ment/9675534

    [54]

    Biswas B R, Gupta S. Memristor-specific failures: New verification methods and emerging test problems[C/OL]//Proc of the 40th VLSI Test Symp (VTS). Los Alamitos, CA: IEEE Computer Society, 2022[2023-01-02]. https://ieeexplore.ieee.org/document/9794274

    [55]

    Yang J, Lee H, Jeong J H, et al. Circuit-level exploration of ternary logic using memristors and MOSFETs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(2): 707−720 doi: 10.1109/TCSI.2021.3121437

    [56]

    Wu Zhixin, Zhang Yuejun, Du Shimin, et al. A three-valued adder circuit implemented in ZnO memristor with multi-resistance states[C/OL]//Proc of the 14th Int Conf on ASIC (ASICON). Piscataway, NJ: IEEE, 2021[2023-01-02]. https://ieeexplore.ieee.org/document/9794274

    [57]

    Shanmukh S, RohitKumar S, Hemaprasad P, et al. Low power 3-bit encoder design using memristor[C/OL]//Proc of the 2nd Int Conf on Intelligent Technologies (CONIT). Piscataway, NJ: IEEE, 2022[2023-01-02]. https://ieeexplor e.ieee.org/document/9848019

    [58]

    Soudry D, Castro D Di, Gal A, et al. Memristor-based multilayer neural networks with online gradient descent training[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2408−2421 doi: 10.1109/TNNLS.2014.2383395

    [59]

    Chabi D, Wang Zhaohao, Bennett C, et al. Ultrahigh density memristor neural crossbar for on-chip supervised learning[J]. IEEE Transactions on Nanotechnology, 2015, 14(6): 954−962 doi: 10.1109/TNANO.2015.2448554

    [60]

    Zheng Nan, Mazumder P. Learning in memristor crossbar-based spiking neural networks through modulation of weight-dependent spike-timing-dependent plasticity[J]. IEEE Transactions on Nanotechnology, 2018, 17(3): 520−532 doi: 10.1109/TNANO.2018.2821131

    [61]

    Yakopcic C, Fernando B R, Taha T M. Design space evaluation of a memristor crossbar based multilayer perceptron for image Professing[C/OL]//Proc of the 31st Int Joint Conf on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2019[2023-01-02]. https://ieeexplore.ieee.org/document/8852005

    [62]

    Zhong Yanan, Tang Jianshi, Li Xinyi, et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal Professing[J]. Nature Communications, 2021, 12(1): 1−9 doi: 10.1038/s41467-020-20314-w

    [63]

    Hong Qinghui, He Bang, Zhang Zedi, et al. In-memory computing circuit implementation of complex-valued hopfield neural network for efficient portrait restoration [J/OL]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023[2023-03-22]. https://ieeexplore.ieee.org/document/10040238

    [64]

    Hong Qinghui, He Bang, Zhang Zedi, et al. Circuit design and application of discrete cosine transform based on memristor[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, 13(2): 502−513 doi: 10.1109/JETCAS.2023.3243569

    [65]

    Hung J M, Xue C X, Kao H Y, et al. A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices[J]. Nat Electron, 2021, 4: 921−930 doi: 10.1038/s41928-021-00676-9

    [66]

    Xue C X, Chen W H, Liu J S, et al. 24.1 A 1 MB multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC computing time for CNN based AI edge professors [C]//Proc of the 65th IEEE Int Solid-State Circuits Conf (ISSCC). Piscataway, NJ: IEEE, 2019: 388−390

    [67]

    Xie Jing, Afshari S, Esqueda I S. Hexagonal boron nitride memristor arrays for analog-based machine learning hardware[J]. NPJ 2D Materials and Applications, 2022, 6((1): ): 1−7 doi: 10.1038/s41699-021-00282-5

    [68]

    Yao Peng, Wu Huaqiang, Gao Bin, et al. Fully hardware implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792): 641−646 doi: 10.1038/s41586-020-1942-4

    [69]

    Wan W, Kubendran R, Schaefer C, et al. A compute-in-memory chip based on resistive random-access memory[J]. Nature, 2022, 608((7923): ): 504−512 doi: 10.1038/s41586-022-04992-8

    [70]

    Gao Di, Huang Qingrong, Zhang G L, et al. Bayesian inference based robust computing on memristor crossbar[C]//Proc of the 58th ACM/IEEE Design Automation Conf (DAC). Piscataway, NJ: IEEE, 2021: 121−126

    [71]

    Mohan C, Camuñas-Mesa L A, José M. Neuromorphic low-power inference on memristive crossbars with on-chip offset calibration[J]. IEEE Access, 2021, 9: 38043−38061 doi: 10.1109/ACCESS.2021.3063437

    [72]

    Qin Yifan, Kuang Rui, Huang Xiaodi, et al. Design of high robustness BNN inference accelerator based on binary memristors[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3435−3441 doi: 10.1109/TED.2020.2998457

    [73]

    Fu Jingyan, Liao Zhiheng, Wang Jinhui. Level scaling and pulse regulating to mitigate the impact of the cycle-to-cycle variation in memristor-based edge AI system[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1752−1762 doi: 10.1109/TED.2022.3146801

    [74]

    Zhang Zhang, Xu Ao, Li Chao, et al. Gate-controlled memristor FPGA model for quantified neural network[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(11): 4583−4587

    [75]

    Zhang Zhang, Chen Qilai, Han Tingting, et al. Memristor-based circuit demonstration of gated recurrent unit for predictable neural network[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6763−6768 doi: 10.1109/TED.2022.3217116

    [76]

    Wang Mengxing, Cai Wenlong, Cao Kaihua, et al. Current induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance[J]. Nature Communications, 2018, 9(1): 1−7 doi: 10.1038/s41467-017-02088-w

    [77]

    Cao Kaihua, Cai Wenlong, Liu Yizheng, et al. In-memory direct professing based on nanoscale perpendicular magnetic tunnel junctions[J]. Nanoscale, 2018, 10(45): 21225−21230 doi: 10.1039/C8NR05928D

    [78] 何炎祥,沈凡凡,张军,等. 新型非易失性存储器架构的缓存优化方法综述[J]. 计算机研究与发展,2015,52(6):1225−1241 doi: 10.7544/issn1000-1239.2015.20150104

    He Yanxiang, Shen Fanfan, Zhang Jun, et al. Cache optimization approaches of emerging non-volatile memory architecture: A survey[J]. Journal of Computer Research and Development, 2015, 52(6): 1225−1241 (in Chinese) doi: 10.7544/issn1000-1239.2015.20150104

    [79]

    Tsou Y J, Chen W J, Shih H C, et al. Thermally robust perpendicular SOT-MTJ memory cells with STT-assisted field-free switching[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6623−6628 doi: 10.1109/TED.2021.3110833

    [80]

    Angizi S, He Z, Awad A, et al. MRIMA: An MRAM-based in-memory accelerator[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(5): 1123−1136 doi: 10.1109/TCAD.2019.2907886

    [81]

    Wang Chao, Wang Zhaohao, Wang Gefei, et al. Design of an area-efficient computing in memory platform based on STT-MRAM[J]. IEEE Transactions on Magnetics, 2021, 57(2): 1−4

    [82]

    Nehra V, Prajapati S, Kumar T N, et al. High-performance computing-in-memory architecture using STT-/SOT-based series triple-level cell MRAM[J]. IEEE Transactions on Magnetics, 2021, 57(8): 1−12

    [83]

    Kim J, Bae K, Park J. Low power SOT-MRAM cell configuration for dual write operation[C/OL]//Proc of the 6th Int Conf on Electronics, Information, and Communication (ICEIC). Piscataway, NJ: IEEE, 2021[2023-01-02]. https://ieeexplore.ieee.org/document/9369790

    [84]

    Cai Hao, Bian Zhongjian, Fan Zhonghua, et al. Commodity bit-cell sponsored MRAM interaction design for binary neural network[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1721−1726 doi: 10.1109/TED.2021.3134588

    [85]

    Pham T N, Trinh Q K, Chang I J, et al. STT-BNN: A novel STT-MRAM in-memory computing macro for binary neural networks[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12(2): 569−579 doi: 10.1109/JETCAS.2022.3169759

    [86]

    Jung S, Lee H, Myung S, et al. A crossbar array of magne-toresistive memory devices for in-memory computing[J]. Nature, 2022, 601(7892): 211−216 doi: 10.1038/s41586-021-04196-6

    [87]

    Chiu Y C, Yang C S, Teng S H, et al. A 22 nm 4 Mb STT-MRAM data-encrypted near-memory computation macro with a 192 GB/s read-and-decryption bandwidth and 25.1-55.1TOPS/W 8b MAC for AI operations[C]//Proc of the 68th IEEE Int Solid-State Circuits Conf (ISSCC). Piscataway, NJ: IEEE, 2022: 178−18

    [88]

    Singh A, Zahedi M, Shahroodi T, et al. CIM-based robust logic accelerator using 28 nm STT-MRAM characterization chip tapeout[C]//Proc of the 4th Int Conf on Artificial Intelligence Circuits and Systems (AICAS). Piscataway, NJ: IEEE, 2022: 451−454

    [89]

    Wang Jinkai, Bai Yining, Wang Hongyu, et al. Reconfigurable bit-serial operation using toggle SOT-MRAM for high-performance computing in memory architecture[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(11): 4535−4545 doi: 10.1109/TCSI.2022.3192165

    [90]

    Kim T, Jang Y, Kang M G, et al. SOT-MRAM digital PIM architecture with extended parallelism in matrix multiplication[J]. IEEE Transactions on Computers, 2022, 71(11): 2816−2828 doi: 10.1109/TC.2022.3155277

    [91]

    Lu Anni, Luo Yandong, Yu Shimeng. An algorithm-hardware co-design for Bayesian neural network utilizing SOT-MRAM’s inherent stochasticity[J]. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2022, 8(1): 27−34 doi: 10.1109/JXCDC.2022.3177588

    [92]

    Nisar A, Dhull S, Mittal S, et al. SOT and STT-based 4-bit MRAM cell for high-density memory applications[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4384−4390 doi: 10.1109/TED.2021.3097294

    [93]

    Srinivasa S, Ramanathan A K, Li Xueqing, et al. ROBIN: Monolithic-3D SRAM for enhanced robustness with in-memory computation support[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(7): 2533−2545 doi: 10.1109/TCSI.2019.2897497

    [94]

    Hsueh F K, Lee C Y, Xue C X, et al. Monolithic 3D SRAM-CIM macro fabricated with BEOL gate-all-around MOSFETs[C/OL]//Proc of the 65th IEEE Int Electron Devices Meeting (IEDM). Piscataway, NJ: IEEE, 2019 [2023-01-02]. https://ieeexplore.ieee.org/document/8993628

    [95]

    Li K S, Hsueh F K, Shen C H, et al. FinFET-based monolithic 3D+ with RRAM array and computing in memory SRAM for intelligent IoT chip application[C]//Proc of the 28th IEEE SOI-3D-Subthreshold Microelectro-nics Technology Unified Conf (S3S). Piscataway, NJ: IEEE, 2018[2023-01-02]. https://ieeexplore.ieee.org/document/8640186

    [96]

    Kota S, Tatsuo O, Kodai U, et al. A 96-MB 3D-stacked SRAM using inductive coupling with 0.4-V Transmitter, termination scheme and 12: 1 serdes in 40 nm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(2): 692−703 doi: 10.1109/TCSI.2020.3037892

    [97]

    Adam G C, Hoskins B D, Prezioso M, et al. 3D memristor crossbars for analog and neuromorphic computing applications[J]. IEEE Transactions on Electron Devices, 2017, 64(1): 312−318 doi: 10.1109/TED.2016.2630925

    [98]

    Fernando B R, Qi Yangjie, Yakopcic C, et al. 3D memristor crossbar architecture for a multicore neuromorphic system [C/OL]//Proc of the 32nd Int Joint Conf on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2020[2023-01-02]. https://ieeexplore.ieee.org/document/9206929

    [99]

    Veluri H, Li Yida, Niu J X, et al. High-throughput, area-efficient, and variation-tolerant 3D in-memory compute system for deep convolutional neural networks[J]. IEEE Internet of Things Journal, 2021, 8(11): 9219−9232 doi: 10.1109/JIOT.2021.3058015

    [100]

    Huo Qiang, Yang Yiming, Wang Yiming, et al. A computing-in-memory macro based on three-dimensional resistive random-access memory[J]. Nature Electronics, 2022, 5(7): 469−477 doi: 10.1038/s41928-022-00795-x

    [101]

    Sun Wenxuan, Zhang Woyu, Yu Jie, et al. 3D reservoir computing with high area efficiency (5.12TOPS/mm2) implemented by 3D dynamic memristor array for temporal signal professing[C]//Proc of the 36th IEEE Symp on VLSI Technology and Circuits (VLSI Technology and Circuits). Piscataway, NJ: IEEE, 2022: 222−223

    [102]

    Lin Peng, Li Can, Wang Zhongrui, et al. Three-dimensional memristor circuits as complex neural networks[J]. Nature Electronics, 2020, 3(4): 225−232 doi: 10.1038/s41928-020-0397-9

    [103]

    Xue C X, Hung J M, Kao H Y, et al. A 22 nm 4 Mb 8 b-precision ReRAM computing-in-memory macro with 11.91 to 195.7 TOPS/W for tiny AI edge devices[C]//Proc of the 67th IEEE Int Solid-State Circuits Conf (ISSCC). Piscataway, NJ: IEEE, 2021: 245−247

    [104]

    Hung J M, Wen T H, Huang Y H, et al. 8 b precision 8 Mb ReRAM compute-in-memory macro using direct-current-free time-domain readout scheme for AI edge devices[J]. IEEE Journal of Solid-State Circuits, 2023, 58(1): 303−315 doi: 10.1109/JSSC.2022.3200515

    [105]

    Liu Dingbang , Zhou Haoxiang, Mao Wei, et al. An energy-efficient mixed-bit CNN accelerator with column parallel readout for ReRAM-based in-memory computing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12(4): 821−834

    [106]

    Gauchi R, Kooli M, Vivet P, et al. Memory sizing of a scalable SRAM in-memory computing tile based architecture[C]//Proc of the 27th IFIP/IEEE Int Conf on Very Large Scale Integration (VLSI-SoC). Piscataway, NJ: IEEE, 2019: 166−171

    [107]

    Yu Shimeng, Sun Xiaoyu, Peng Xiaochen, et al. Compute in-memory with emerging nonvolatile-memories: Challenges and prospects[C/OL]//Proc of the 13th IEEE Custom Integrated Circuits Conf (CICC). Piscataway, NJ: IEEE, 2020[2023-01-02]. https://ieeexplore.ieee.org/document/9075887

    [108]

    Lin Zhiting, Zhang Jian, Wu Xiulong, et al. Memory compiler for RRAM in-memory computation[C]//Proc of the 7th Int Conf on Integrated Circuits and Microsystems (ICICM). Piscataway, NJ: IEEE, 2022: 382−385

    [109]

    Staudigl F, Merchant F, Leupers R. A survey of neuromorphic computing-in-memory: Architectures, simulators, and security[J]. IEEE Design & Test, 2022, 39(2): 90−99

    [110]

    Bocquet M, Hirtzlin T, Klein J O, et al. Embracing the unreliability of memory devices for neuromorphic computing[C/OL]//Proc of the 58th IEEE Int Reliability Physics Symp (IRPS). Piscataway, NJ: IEEE, 2020[2023-01-02]. https://ieeexplore.ieee.org/document/9128346

  • 期刊类型引用(2)

    1. 李光. 基于区块链技术的建筑工程质量管理策略. 中国建筑装饰装修. 2025(02): 75-77 . 百度学术
    2. Jing He,Xiaofeng Ma,Dawei Zhang,Feng Peng. Supervised and revocable decentralized identity privacy protection scheme. Security and Safety. 2024(04): 113-135 . 必应学术

    其他类型引用(1)

图(12)  /  表(5)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  188
  • PDF下载量:  293
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-05-14
  • 修回日期:  2023-09-25
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回